a2 United States Patent

Luby et al.

US009236887B2

US 9,236,887 B2
Jan. 12, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)
(65)

(63)

(60)

(1)

(52)

(58)

FILE DOWNLOAD AND STREAMING
SYSTEM

Inventors: Michael G. Luby, Berkeley, CA (US);
M. Amin Shokrollahi, Preverenges
(CH); Mark Watson, San Francisco, CA
(US)

Assignee: Digital Fountain, Inc., San Diego, CA

(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

Appl. No.: 13/408,944

Filed: Feb. 29, 2012
Prior Publication Data
US 2013/0067295 Al Mar. 14, 2013

Related U.S. Application Data

Continuation of application No. 12/197,993, filed on
Aug. 25, 2008, which is a continuation of application
No. 11/125,818, filed on May 9, 2005, now Pat. No.
7,418,651.

Provisional application No. 60/569,127, filed on May
7,2004.

Int. CI.

GOGF 11/00 (2006.01)

HO3M 13/00 (2006.01)
(Continued)

U.S. CL

CPC HO3M 13/29 (2013.01); HO3M 13/3761
(2013.01); HO4L 1/0041 (2013.01);
(Continued)

Field of Classification Search

CPC ..o HO3M 13/3761;, HO3M 13/29; HO4L

1/0041; HO4L 1/0061
USPC o 714/746, 799, 810

See application file for complete search history.

115
~

208

1S(0), I1S(1), 1S (2), ..., IS(K-1)

8o, 81, ...

(56) References Cited
U.S. PATENT DOCUMENTS

3,909,721 A
4,365,338 A

9/1975 Bussgang et al.
12/1982 McRae et al.

(Continued)

FOREIGN PATENT DOCUMENTS

CN 1338839 A 3/2002
CN 1425228 A 6/2003

(Continued)
OTHER PUBLICATIONS

Mimnaugh, A et, al. “Enabling Mobile Coverage for DVB-T” Digital

Fountain Whitepaper Jan. 29,2008, pp. 1-9, XP002581808 Retrieved

from the Internet: URL:http://www.digitalfountain.com/ufiles/

library/DVB-T-whitepaper.pdf> [retrieved on May 10, 2010].
(Continued)

Primary Examiner — Shelly A Chase

(57) ABSTRACT

A method of encoding data operates on an ordered set of input
symbols and includes generating redundant symbols from the
input symbols, and includes generating output symbols from
a combined set of symbols including the input symbols and
the redundant symbols, wherein the number of possible out-
put symbols is much larger than the number of the combined
set of symbols, wherein at least one output symbol is gener-
ated from more than one symbol in the combined set of
symbols and from less than all of the symbols in the combined
set of symbols. The redundant symbols are generated from an
ordered set of input symbols in a deterministic process such
that a first set of static symbols calculated using a first input
symbol has a low common membership with a second set of
static symbols calculated using a second input symbol dis-
tinct from the first input symbol.

27 Claims, 17 Drawing Sheets

[

220

STATIC

DYNAMIC

ENCODER

I
|

REDUNDANCY

RE(0), RE(1),
..... RE(R-1)

ENCODER

Blo). B), B(l,), -

K = cALCULATOR

US 9,236,887 B2

Page 2
(51) Int.CL 6,154,452 A 11/2000 Marko et al.
HO3M 13/29 (2006.01) §165544 A 122000 Desbinscial
,166, ebbins et al.
HO3M 13/37 (2006.01) 6,175.944 Bl 1/2001 Urbanke et al.
HO4L 1/00 (2006.01) 6,178,536 Bl 1/2001 Sorkin
HO3M 13/11 (2006.01) 6,185,265 Bl 2/2001 Campanella
HO3M 13/19 (2006.01) 6,195,777 Bl 2/2001 Luby et al.
(52) US.Cl 6,223,324 Bl 4/2001 Sinha et al.
5. L 6226259 B1 5/2001 Piret
CPC HO04L1/0045 (2013.01); HO4L 1/0057 6.226.301 Bl 5/2001 Cl}ong etal.
(2013.01); HO4L 1/0065 (2013.01); HO3M 6,229,824 Bl 5/2001 Marko
13/1102 (2013.01); HO3M 13/19 (2013.01) 6,243,846 Bl 6/2001 Schuster et al.
6,272,658 Bl /2001 Steele et al.
. 6,278,716 Bl 8/2001 Rubenstein et al.
(56) References Cited 6.208.462 Bl 10/2001 Yi
6307,487 Bl 10/2001 Luby
U.S. PATENT DOCUMENTS 6314280 B1 11/2001 Eberlein et al.
. 6,320,520 Bl 11/2001 Luby
4,589,112 A 5;1986 Karim 6332,163 Bl 12/2001 Bowman-Amuah
;"?gé’gég i é/}ggg vR\;)eSnS 6.333,926 Bl 12/2001 Van Heeswyk et al.
3153301 A 1011992 Clark g%;g’ggg gf ;‘ggg% %-“btyt .
5331320 A 7/1994 Cideciyan et al. 641123 Bl 52002 Haben otal
5371,532 A 12/1994 Gelman et al. 6415326 B 7/2002 Gupta et al.
5372,532 A 12/1994 Robertson, Jr. 6420982 Bl 72002 Browm
5,379,297 A 1/1995 Glover et al. 6’421’387 Bl 7/2002 Rhee
5,421,031 A 5/1995 De Bey 6430233 Bl 82002 Dillon et al.
5,425,050 A 6/1995 Schreiber et al. s -
o A Slo0s orhreib 6,445,717 Bl 9/2002 Gibson et al.
SAis s A 101993 Noveonetal 6459.811 B1 10/2002 Hurst, Jr.
5465318 A 11/1995 Seinoh 6,466,698 Bl 10/2002 Creusere
3517208 A 5/1096 S‘C?JOI;;’ a 6,473,010 Bl 10/2002 Vityaev et al.
S17, 6,486,803 Bl 11/2002 Luby et al.
g’gég%g i lg;}ggg Eiﬁi?iﬁn?n al. 6A487.692 Bl 11/2002 Morelos-Zaragoza
5.568.614 A 10/1996 Mendelson ef al. 6,496,980 Bl 12/2002 Tillman et al.
6497479 Bl 12/2002 Stoffel et al.
gggggg i lgﬁggg ﬁalzu“}f_ttﬁ 6,510,177 Bl 1/2003 De Bonet et al.
Se175a1 A /1907 Al%;::sé:tal 6,523,147 Bl 2/2003 Kroeger et al.
5642365 A 6/1997 Murakami et al 6,535,920 Bl 32003 Parry et al
5650614 A 81997 Bailey, Il 6,577,399 Bl 672003 Gupta ct al.
5’699’473 A 121997 Kim Ys 6,584,543 B2 6/2003 Williams et al.
5701582 A 12/1997 DeBey At ggggg Xv‘ﬁfga“g
5751336 A 5/1998 Aggarwal et al. e yutd
) Whi 6,618,451 Bl 9/2003 Gonikberg
ST R Y ioos White . 6,631,172 Bl 10/2003 Shokrollahi et al.
2’28}3‘;3 i ;}ggg gz;lrfg‘ezt“ayla etal. 6,633,856 B2 10/2003 Richardson et al.
802, : 6,641,366 B2 11/2003 Nordhoff
ggggfég i 1%332 E:Z;e:gftaL 6,643,332 Bl 11/2003 Morelos-Zaragoza et al.
5.844.636 A 12/1998 Joseph et al. 2’2%’32‘5‘ gf %883 ggﬁféf;llfh
5,870,412 A 2/1999 Schuster et al. o -
5003775 A 5/1999 Murray 6,694,476 Bl 2/2004 Sridharan et al.
5017852 A 6/1999 Butterfield et al. g’;gg’gzg g} %883 (T:;‘S}}‘fgfa‘jt al.
5,926,205 A 7/1999 Krause et al. 6’742’154 Bl 5/2004 Barnard '
593305 A 81999 Rothenberg 6748441 Bl 6/2004 Gemmell
5,936,659 A 8/1999 Viswanathan et al. 6’751,772 Bl 6/2004 Kim ot al
5,936,949 A 8/1999 Pasternak et al. 6’765’866 Bl 72004 Wyatt '
5953537 A 9/1999 Balicki et al. 6801202 BI 102004 Hwang
5,970,098 A 10/1999 Herzberg o1n -
Tomam A 1D1ogs word 6,810499 B2 10/2004 Sridharan et al.
Toornee A 111990 v il 6,820,221 B2 112004 Fleming
6’005’477 A 12/1999 Deck et al : 6,831,172 Bl 12/2004 Barbucci et al.
THE e S cap b 208 G
6,012,159 A L /2000 Fischer et ; 6,856,263 B2 2/2005 Shokrollahi et al.
2’8};";28 i } /3888 %ﬂm"%eta " 6,868,083 B2 3/2005 Apostolopoulos et al.
18, y er;lr{l}‘i lo et al. 6,876,623 Bl 4/2005 Lou et al.
Soa100L A 2000 Dotk 6,882,618 Bl 4/2005 Sakoda etal.
O A Sy nouetal 6,895,547 B2 5/2005 Eleftheriou et al.
350 A 05000 Lok “afta~ 6,909,383 B2 6/2005 Shokrollahi et al.
CoTo0a1 A /2000 Ku _Ye“l~1 6,928,603 Bl 8/2005 Castagna et al.
C 070042 A /2000 Vumsae:al' 6,937,618 Bl 82005 Noda et al.
C081907 A 62000 WTt;“efaf 6,956,875 B2 10/2005 Kapadia et al.
C081909 A 69000 Luboetal 6,965,636 B1 11/2005 DesJardins et al.
G030l A 62000 Spie{man' 6,985,459 B2 1/2006 Dickson
6:0882330 A 7/2000 Bruck et al. 6,995,692 B2 2/2006 Yokota et al.
6,097,320 A 8/2000 Kuki et al. 7,010,052 B2 3/2006 Dill et al. .
6,134,596 A 10/2000 Bolosky et al. 7,030,785 B2 4/2006 Shokrollahi et al.
6,141,053 A 10/2000 Saukkonen 7,031,257 Bl 4/2006 Lu et al.
6,141,787 A 10/2000 Kunisa et al. 7,057,534 B2 6/2006 Luby
6,141,788 A 10/2000 Rosenberg et al. 7,068,681 B2 6/2006 Chang et al.

US 9,236,887 B2

Page 3
(56) References Cited 8,327,403 B1 12/2012 Chilvers et al.
8,331,445 B2 12/2012 Garudadri et al.
U.S. PATENT DOCUMENTS 8,340,133 B2 12/2012 Kim et al.
8,422,474 B2 4/2013 Park et al.
7,068,729 B2 6/2006 Shokrollahi et al. 8,462,643 B2 6/2013 Walton et al.
7,072,971 B2 7/2006 Lassen etal. 8,544,043 B2 9/2013 Parekh et al.
7,073,191 B2 7/2006 Srikantan et al. 8,572,646 B2 10/2013 Haberman et al.
7,100,188 B2 8/2006 Hejna et al. 8,615,023 B2 12/2013 Ohetal.
7,110,412 B2 9/2006 Costa et al. 8,638,796 B2 1/2014 Dan et al.
7,113,773 B2 9/2006 Quick, Jr. et al. 8,713,624 Bl 4/2014 Harvey etal.
7,139,660 B2 11/2006 Sarkar et al. 8,737,421 B2 5/2014 Zhangetal.
7,139,960 B2 11/2006 Shokrollahi et al. 8,812,735 B2 8/2014 Igarashi
7,143,433 Bl 11/2006 Duan et al. 8,958,375 B2 2/2015 Watson et al.
7,151,754 Bl 12/2006 Boyce et al. 2001/0015944 Al 8/2001 Takahashi et al.
7,154,951 B2 12/2006 Wang 2001/0033586 Al 10/2001 Takashimizu et al.
7,164,370 Bl 1/2007 Mishra 2002/0009137 Al 1/2002 Nelson et al.
7.164.882 B2 1/2007 Poltorak 2002/0053062 Al 5/2002 Szymanski
7.168.030 B2* 1/2007 AfiyOshi .ceorvreorccrrreorn 714/786 2002/0083345 Al 6/2002 Halliday et al.
7,219,289 B2 5/2007 Dickson 2002/0085013 Al 7/2002 Lippincott
7.231.404 B2 6/2007 Paila et al. 2002/0133247 Al 9/2002 Smith et al.
7233264 B2 6/2007 Luby 2002/0141433 A1 10/2002 Kwon et al.
7,240,236 B2 7/2007 Cutts et al. 2002/0143953 Al 10/2002 Aiken
7,240,358 B2 7/2007 Horn et al. 2002/0191116 Al 12/2002 Kessler et al.
7,243,285 B2 7/2007 Foisy et al. 2003/0005386 Al 1/2003 Bhatt et al.
7,249.291 B2 7/2007 Rasmussen et al. 2003/0037299 Al 2/2003 Smith
7,254,754 B2 8/2007 Hetzler et al. 2003/0086515 Al 5/2003 Trans et al.
7.257.764 B2 8/2007 Suzuki et al. 2003/0101408 Al 5/2003 Martinian et al.
7:265:688 B2 9/2007 Shokrollahi et al. 2003/0106014 Al 6/2003 Dohmen et al.
7,293,222 B2 11/2007 Shokrollahi et al. 2003/0138043 Al 7/2003 Hannuksela
7295573 B2 11/2007 Yi et al. 2003/0194211 Al 10/2003 Abecassis
7:3()4:99() B2 12/2007 Rajwan 2003/0207696 Al 11/2003 Willenegger et al.
7,318,180 B2 1/2008 Starr 2003/0224773 Al 12/2003 Deeds
7,320,099 B2 1/2008 Miura et al. 2004/0015768 Al 1/2004 Bordes et al.
7,363,048 B2 4/2008 Cheng et al. 2004/0031054 Al 2/2004 Dankworth et al.
7391,717 B2 6/2008 Klemets et al. 2004/0049793 Al 3/2004 Chou
7,394,407 B2 7/2008 Shokrollahi et al. 2004/0081106 Al 4/2004 Bruhn
7,398,454 B2 7/2008 Cai et al. 2004/0096110 Al 5/2004 Yogeshwar et al.
7,409,626 Bl /2008 Schelstracte 2004/0117716 Al 6/2004 Shen
7,412,641 B2 8/2008 Shokrollahi et al. 2004/0151109 Al 82004 Batra et al.
7,418,651 B2 8/2008 Luby et al. 2004/0162071 Al 8/2004 Grilli et al.
7,451,377 B2 11/2008 Shokrollahi et al. 2004/0207548 Al 10/2004 Kilbank
7,483,447 B2 1/2009 Chang et al. 2004/0240382 Al 12/2004 Ido et al.
7,483,489 B2 1/2009 Gentric et al. 2004/0255328 Al 12/2004 Baldwin et al.
7.512.697 B2 3/2009 Lassen et al. 2005/0018635 Al 1/2005 Proctor, Jr.
7525994 B2 4/2000 Scholte 2005/0028067 Al 2/2005 Weirauch
7.529.806 B 5/2009 Shteyn 2005/0071491 Al 3/2005 Seo
7,532,132 B2 5/2009 Shokrollahi et al. 2005/0084006 Al 4/2005 Lei et al.
7,555,006 B2 6/2009 Wolfe et al. 2005/0091697 Al 4/2005 Tanaka et al.
7,559,004 Bl 7/2009 Chang et al. 2005/0097213 Al 5/2005 Barrett et al.
7.570.665 B2 8/2009 FErtel et al. 2005/0105371 Al 5/2005 Johnson et al.
7:574:706 B2 8/2009 Meulemans et al. 2005/0123058 Al 6/2005 Greenbaum et al.
7,590,118 B2 9/2009 Giesberts et al. 2005/0138286 Al 6/2005 Franklin et al.
7,597,423 B2 10/2009 Silverbrook 2005/0160272 Al 7/2005 Teppler
7,613,183 Bl 11/2009 Brewer et al. 2005/0163468 Al 7/2005 Takahashi et al.
7,633,413 B2 12/2009 Shokrollahi et al. 2005/0180415 Al 82005 Cheung et al.
7,633,970 B2 12/2009 van Kampen et al. 2005/0193309 Al 9/2005 Grilli et al.
7,644,335 B2 1/2010 Luby et al. 2005/0195752 Al 9/2005 Amin et al.
7,650,036 B2 1/2010 Lei et al. 2005/0207392 Al 9/2005 Sivalingham et al.
7,668,198 B2 2/2010 Yi et al. 2005/0216472 Al 9/2005 Leon et al.
7,676:735 B2 3/2010 Luby et al. 2005/0216951 Al 9/2005 MaclInnis
7,711,068 B2 5/2010 Shokrollahi et al. 2005/0254575 Al 112005 Hannuksela et al.
7,720,096 B2 5/2010 Klemets 2006/0015568 Al 1/2006 Walsh et al.
7,720,174 B2 5/2010 Shokrollahi et al. 2006/0020796 Al 1/2006 Aura et al.
7,721,184 B2 5/2010 Luby et al. 2006/0031738 Al 2/2006 Fay et al.
7,812,743 B2 10/2010 Luby 2006/0037057 Al 2/2006 Xu
7,831,896 B2 11/2010 Amram et al. 2006/0093634 Al 5/2006 Lutz et al.
7924913 B2 4/2011 Sullivan et al. 2006/0107174 Al 5/2006 Heise _
7,956,772 B2 6/2011 Shokrollahi et al. 2006/0109805 Al 5/2006 Malamal Vadakital et al.
7,961,700 B2 6/2011 Malladi et al. 2006/0120464 Al 6/2006 Hannuksela
7,971,129 B2 6/2011 Watson et al. 2006/0212444 Al 9/2006 Handman et al.
7,979,769 B2 7/2011 Leeet al. 2006/0212782 Al 9/2006 Li
8,027,328 B2 9/2011 Yang et al. 2006/0229075 Al 10/2006 Kim et al.
8,028,322 B2 9/2011 Riedl et al. 2006/0244824 Al 112006 Debey
8,081,716 B2 12/2011 Kanget al. 2006/0244865 Al 11/2006 Simon
8,135,073 B2 3/2012 Shen 2006/0248195 Al 112006 Toumura et al.
8,185,794 B2 5/2012 Lohmar et al. 2006/0256851 Al 112006 Wang et al.
8,185,809 B2 5/2012 Luby et al. 2007/0002953 Al 1/2007 Kusunoki
RE43,741 E 10/2012 Shokrollahi et al. 2007/0006274 Al 1/2007 Paila et al.
8,301,725 B2 10/2012 Biderman et al. 2007/0016594 Al 1/2007 Visharam et al.

US 9,236,887 B2

Page 4
(56) References Cited 2010/0011117 Al 1/2010 Hristodorescu et al.
2010/0011274 Al 1/2010 Stockhammer et al.
U.S. PATENT DOCUMENTS 2010/0020871 Al 1/2010 Hannuksela et al.
2010/0023525 Al 1/2010 Westerlund et al.
2007/0022215 Al 1/2007 Singer et al. 2010/0049865 Al 2/2010 He_mn_uksela etal.
2007/0028099 Al 2/2007 Entin et al. 2010/0061444 Al 3/2010 Wilkins et al.
2007/0078876 Al 4/2007 Hayashi et al. 58}8; 8(1)21‘6‘% i} ggg}g Eei 1<?t atl~ |
2007/0081562 Al 4/2007 Ma ohli et al.
2007/0110074 Al 5/2007 Bradley et al. 3818;81 gigg ﬁi %818 Xan etal.
2007/0140369 Al 6/2007 Limberg uang
RN T et WO T e
u et al.
2007/0176800 Al 8/2007 Rijavec 2010/0211690 Al 8/2010 Pakzad et al.
2007/0177811 Al 8/2007 Yang et al. 2010/0223533 Al 9/2010 Stockhammer et al.
2007/0185973 Al 8/2007 Wayda et al. 2010/0235472 Al 9/2010 Sood et al.
2007/0195894 Al 8/2007 Shokrollahi et al. 2010/0235528 Al 9/2010 Bocharov et al.
2007/0200949 Al 8/2007 Walker et al. 2010/0257051 Al 10/2010 Fernandez Gutierrez
2007/0201549 Al 82007 Hannuksela et al. 2010/0318632 Al 12/2010 Yoo etal.
2007/0204196 Al 8/2007 Watson et al. 2011/0019769 Al 1/2011 Shokrollahi et al.
2007/0230568 Al 10/2007 Eleftheriadis et al. 2011/0055881 Al 3/2011 Yuetal.
2007/0233784 Al 10/2007 Orourke et al. 2011/0083144 Al 4/2011 Bocharov et al.
2007/0255844 Al 11/2007 Shen et al. 2011/0096828 Al 42011 Chenetal.
2008/0010153 Al 1/2008 Pugh-O’Connor et al. 2011/0119394 Al 52011 Wanget al.
2008/0034273 Al 2/2008 Luby 2011/0119396 Al 5/2011 Kwon et al.
2008/0052753 Al 2/2008 Huang et al. 2011/0216541 Al 9/2011 Inoue et al.
2008/0058958 Al 3/2008 Cheng 2011/0231519 Al 9/2011 Luby et al.
2008/0059532 Al 3/2008 Kazmi et al. 2011/0231569 Al 9/2011 Luby et al.
2008/0066136 A1l 3/2008 Dorai et al. 2011/0238789 Al 9/2011 Luby et al.
2008/0075172 Al 3/2008 Koto 2011/0239078 Al 9/2011 Luby et al.
2008/0086751 Al 4/2008 Horn et al. 2011/0258510 A1 10/2011 Watson et al.
2008/0101478 Al 5/2008 Kusunoki 2011/0268178 Al 11/2011 Park et al.
2008/0134005 Al 6/2008 Izzat et al. 381 }; 833831 é ﬁi Hggﬁ gﬁen e: a{
2008/0170564 Al 7/2008 Shi et al. enectal
2008/0170806 Al 7/2008 Kim 2011/0299629 Al 12/2011 Luby et _al.
2008/0172430 Al 7/2008 Thorstensen 2011/0307545 Al 122011 Bouazizi
2008/0172712 Al 7/2008 Munetsugu 2011/0307581 Al 12/2011 Furbeck et al.
2008/0181296 Al 7/2008 Tian et al. 2012/0013746 Al 1/2012 Chen et al.
2008/0189419 Al 8/2008 Girle et al. 2012/0016965 Al 1/2012 Chen et al.
2008/0192818 Al 82008 DiPietro et al. 2012/0020413 Al 1/2012 Chen et al.
BRI SR uiienin &l el
2008/0232357 Al 9/2008 Chen ark et al.
2008/0243918 Al 10/2008 Holtman 2012/0033730 Al 2/2012 Lee
2008/0256418 Al 10/2008 Luby et al. 583; 8835833 i} %83 gﬁen e: a{
2008/0281943 Al 11/2008 Shapiro cn et al.
2008/0285556 Al 11/2008 Park et al. 2012/0042090 Al 2/2012 Chen et al.
2008/0313191 Al 12/2008 Bouazizi %83;8?2?;3; ﬁi gggg iugy al
2009/0003439 Al 1/2009 Wang et al. uby et al.
2009/0019229 Al 1/2009 Morrow et al. 2012/0185530 Al 7/2012 Reza
2009/0031199 Al 1/2009 Luby et al. 2012/0202535 Al 8/2012 Chaddha et al.
2009/0043906 Al 2/2009 Hurst et al. gggggggggg ﬁi gggg EVf};SOHt etl al.
2009/0055705 Al 2/2009 Gao uby et al.
2009/0067551 Al 3/2009 Chen et al. 2012/0210190 Al 82012 Luby et al.
2009/0083806 Al 3/2009 Barrett et al. 2012/0317305 Al 12/2012 Einqsson et al.
2009/0089445 Al 4/2009 Deshpande 2013/0002483 Al 1/2013 Rowitch et al.
2009/0092138 Al 4/2009 Joo et al. 2013/0007223 Al 1/2013 Luby et al.
2009/0100496 Al 4/2009 Bechtolsheim et al. 2013/0091251 Al 42013 Walker et al.
2009/0103523 Al 4/2009 Katis et al. 2013/0246643 Al 9/2013 Luby et al.
2009/0106356 Al 4/2009 Brase et al. 2013/0254634 Al 972013 Luby
2009/0125636 Al 5/2009 Lietal. 2013/0287023 Al 10/2013 Bims
2009/0150557 Al 6/2009 Wormley et al. 2014/0009578 Al 1/2014 Chen et al.
2009/0158114 Al 6/2009 Shokrollahi 2014/0380113 Al 12/2014 Luby
2009/0164653 Al 6/2009 Mandyam et al.
2009/0189792 Al 7/2009 Shokrollahi et al. FOREIGN PATENT DOCUMENTS
2009/0201990 Al 8/2009 Leprovost et al.
2009/0204877 Al 8/2009 Betts
CN 1481643 A 3/2004
2009/0210547 Al 8/2009 Lassen et al.
‘ CN 1708934 A 12/2005
2009/0222873 Al 9/2009 Einarsson CN 1714577 A 12/2005
2009/0287841 Al 11/2009 Chapweske et al.

y / di 1 CN 101390399 A 3/2009
2009/0297123 Al 12/2009 Virdi et al. N 101729857 A 6/2010
2009/0300203 Al 12/2009 Virdi et al. EP 0669587 A2 /1995
2009/0300204 Al 12/2009 Zhang et al. EP 0701371 Al 3/1996
2009/0307565 Al 12/2009 Luby et al. EP 0784401 A2 7/1997
2009/0319563 Al 12/2009 Schnell EP 0853433 Al 7/1998
2009/0328228 Al 12/2009 Schnell EP 0854650 A2 7/1998

2010/0011061 Al 1/2010 Hudson et al. EP 0903955 Al 3/1999

US 9,236,887 B2

Page 5

(56) References Cited Jp 2007520961 A 7/2007
Jp 2007228205 A 9/2007

FOREIGN PATENT DOCUMENTS Ip 2008011404 A 1/2008

Jp 2008016907 A 1/2008

EP 0986908 Al 3/2000 JP 2008508761 A 3/2008
EP 1051027 Al 11/2000 JP 2008508762 A 3/2008
EP 1124344 A1 82001 Jp 2008283232 A 11/2008
EP 1241795 A2 9/2002 JP 2008283571 A 11/2008
EP 1298931 A2 4/2003 JP 2008543142 A 11/2008
EP 1406452 A2 4/2004 Jp 2009027598 A 2/2009
EP 1455504 A2 9/2004 JP 2009522921 A 6/2009
EP 1670256 A2 6/2006 JP 2009522922 A 6/2009
EP 1755248 AL 2/2007 Jp 2009171558 A 7/2009
EP 2071827 A2 6/2009 Jp 2009527949 A 7/2009
EP 1700410 B1 4/2010 JP 2009277182 A 11/2009
P HO07183873 7/1995 Jp 2009544991 A 12/2009
P 08186570 7/1996 Jp 2010539832 A 12/2010
P 8289255 A 11/1996 JP 2011087103 A 4/2011
P 9252253 A 9/1997 Ip 5231218 3/2013
P 11041211 A 2/1999 KR 1020030071815 9/2003
P 11112479 4/1999 KR 1020030074386 A 9/2003
P 11164270 A 6/1999 KR 20040107152 A 12/2004
1P 2000151426 A 5/2000 KR 20040107401 A 12/2004
1P 2000216835 A 8/2000 KR 20050009376 A 1/2005
P 2000513164 A 10/2000 KR 100809086 Bl 3/2008
P 2000307435 A 11/2000 KR 20080083299 A 9/2008
P 2000353969 A 12/2000 KR 20090098919 A 9/2009
P 2001036417 2/2001 RU 99117925 A 7/2001
P 2001094625 4/2001 RU 2189629 C2 9/2002
P 2001223655 A 8/2001 RU 2265960 €2 12/2005
P 2001251287 A 9/2001 RU 2290768 C1 12/2006
P 2001274776 A 10/2001 RU 2297663 C2 4/2007
P 2001274855 A 10/2001 RU 2312390 €2 12/2007
Jp 2002073625 A 3/2002 RU 2357279 €2 5/2009
P 2002204219 A 7/2002 ™™ 1246841 B 1/2006
P 2002543705 A 12/2002 ™™ 1354908 12/2011
P 2003507985 2/2003 ™w 1355168 12/2011
P 2003092564 A 3/2003 WO 9634463 Al 10/1996
P 2003510734 A 3/2003 WO WO0-9750183 Al 12/1997
P 2003174489 6/2003 Wwo 9804973 Al 2/1998
P 2003256321 A 9/2003 WO WO-9832256 Al 7/1998
P 2003318975 A 11/2003 WO 0014921 Al 3/2000
P 2003319012 11/2003 wo 0052600 AL 9/2000
Jp 2003333577 A 11/2003 Wwo 0157667 AL 8/2001
P 2004048704 A 2/2004 WO 0158130 A2 8/2001
P 2004070712 A 3/2004 WO 0158131 A2 8/2001
P 2004135013 A 4/2004 Wwo 0227988 A2 4/2002
P 2004165922 A 6/2004 WO 02063461 Al 8/2002
P 2004516717 A 6/2004 WO WO0-03046742 Al 6/2003
1P 2004192140 A 7/2004 WO WO0-03105484 Al 12/2003
P 2004193992 A 7/2004 WO 2004015948 Al 2/2004
P 2004529533 A 9/2004 WO 2004019521 Al 3/2004
P 2004289621 A 10/2004 WO 2004030273 Al 4/2004
1P 2004343701 A 12/2004 WO WO0-2004036824 Al 4/2004
P 2004348824 A 12/2004 WO 2004040831 Al 5/2004
P 2004362099 A 12/2004 WO 2004047455 Al 6/2004
1P 2005094140 A 4/2005 WO WO0-2004047019 A2 6/2004
P 2005136546 A 5/2005 WO WO-2004088988 Al 10/2004
P 2005514828 T 5/2005 WO WO-2004109538 A1 12/2004
1P 2005204170 A 7/2005 WO 2005041421 Al 5/2005
P 2005223433 A 8/2005 WO 2005078982 Al 8/2005
P 2005277950 A 10/2005 WO WO0-2005107123 11/2005
P 2006503463 A 1/2006 WO WO0-2006013459 Al 2/2006
P 2006505177 A 2/2006 Wwo WO0-06036276 4/2006
P 2006506926 A 2/2006 WO 2006060036 Al 6/2006
P 2006074335 A 3/2006 WO WO-2006057938 A2 6/2006
1P 2006074421 A 3/2006 WO 2006084503 Al 8/2006
P 2006115104 A 4/2006 WO WO-2006116102 A2 11/2006
P 3809957 6/2006 WO WO-06135878 A2 12/2006
P 2006174032 A 6/2006 WO 2007078253 A2 7/2007
JP 2006174045 A 6/2006 WO 2007090834 A2 8/2007
Jp 2006186419 A 7/2006 WO WO0-2007098397 A2 8/2007
Jp 2006519517 A 8/2006 WO WO0-2007098480 Al 8/2007
P 2006287422 A 10/2006 WO 2008011549 A2 1/2008
P 2006319743 A 11/2006 WO WO0-2008023328 A3 4/2008
P 2007013675 A 1/2007 WO 2008054100 Al 5/2008
P 2007089137 A 4/2007 WO 2008085013 Al 7/2008
P 2007158592 A 6/2007 WO 2008086313 Al 7/2008
P 2007174170 A 7/2007 WO WO0-2008131023 Al 10/2008

US 9,236,887 B2
Page 6

(56) References Cited
FOREIGN PATENT DOCUMENTS

WO 2008144004 A1 11/2008
WO WO-2009065526 Al 5/2009
WO WO-2009137705 A2 11/2009
WO 2009143741 Al 12/2009
WO 2010085361 A2 7/2010
WO WO-2011038013 3/2011
WO WO-2011038034 Al 3/2011
WO 2011059286 A2 5/2011
WO 2011070552 Al 6/2011
WO 2011102792 Al 8/2011
WO WO0-2012021540 2/2012
WO WO0-2012109614 Al 8/2012
OTHER PUBLICATIONS

Min-Goo Kim: “On systematic punctured convolutional codes”,
IEEE Trans on Communications, vol. 45, No. 2, Feb. 1997,
XP002628272, the whole document, pp. 133-139.

Muller, et al., “A test-bed for the dynamic adaptive streaming over
HTTP featuring session mobility” MMSys 11 Proceedings of the
second annual ACM conference on Multimedia systems, Feb. 23-25,
2011, San Jose, CA, pp. 271-276.

Naguib, Ayman, etal., “Applications of Space-Time Block Codes and
Interference Suppression for High Capacity and High Data Rate
Wireless Systems,” IEEE, 1998, pp. 1803-1810.

Narayanan, et al., “Physical Layer Design for Packet Data Over
IS-136”, Vehicular Technology Conference, 1997, IEEE 47th Phoe-
nix, AZ, USA May 4-7, 1997, New York, NY, USA, IEEE, US May
4, 1997, pp. 1029-1033.

Nokia: “Reed-Solomon Code Specification for. MBMS Download
and Streaming Services”, 3GPP Draft; S4-050265_RS_ SPEC, 3rd
Generation Partnership Project (3GPP), Mobile Competence Cen-
tre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ;
France, vol. SA WG4, No. San Diego, USA; Apr. 15, 2005,
XP050287675, [retrieved on Apr. 15, 2005].

Nokia Corp., “Usage of ‘mfra’ box for Random Access and Seeking,”
S4-AHI127, 3GPP TSG-SA4 Ad-Hoc Meeting, Dec. 14-16, 2009,
Paris, FR, 2 pp.

Nonnenmacher, et al., “Parity-Based Loss Recovery for Reliable
Multicast Transmission”, IEEE / ACM Transactions on Networking,
IEEE Inc. New York, US, vol. 6, No. 4, Aug. 1, 1998, pp. 349-361.
Ohashi A et al., “Low-Density Parity-Check (LDPC) Decoding of
Quantized Data,” Technical Report of the Institute of Electronics,
Information and Communication Engineers, Aug. 23, 2002, vol. 102,
No. 282, pp. 47-52, RCS2002-154.

Ozden, B. et al.: “A Low-Cost Storage Service for Movie on Demand
Databases,” Proceedings of the 20th Very Large DataBases (VLDB)
Conference, Santiago, Chile (1994).

PA. Chou, A. Mohr, A. Wang, S. Mehrotra, “FEC and Pseudo-ARQ
for Receiver-Driven Layered Multicast of Audio and Video,” pp.
440-449, TEEE Computer Society, Data Compression Conference
(2000).

Pantos, “HTTP Live Streaming draft-pantos-http-live-streaming-
027, Informational, Internet-Draft, Intended status: Informational,
Expires: Apr. 8, 2010, http://tools.ietf.org/html/draft-pantos-http-
live-streaming-02, pp. 1-20, Oct. 5, 2009.

Pantos R et al., “HTTP Live Streaming; draft-pantos-http-live-
streaming-OT.txt ”, HTTP Live Streaming; Draft-Pantos-HTTP-
Live-Streaming-01.Txt, Internet Engineering Task Force, IETF,
Standardworkingdraft, Internet Society (ISOC) 4, Rue Des Falaises
Ch—1205 Geneva, Switzerland, No. 1, Jun. 8, 2009, XP015062692.
Paris, et al., “A low bandwidth broadcasting protocol for video on
demand”, Proc. International Conference on Computer Communica-
tions and Networks, vol. 7, pp. 690-697 (Oct. 1998).

Paris, et al., “Efficient broadcasting protocols for video on demand”,
International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication systems (MASCOTS), vol. 6, pp.
127-132 (Jul. 1998).

Perkins, et al.: “Survey of Packet Loss Recovery Techniques for
Streaming Audio,” IEEE Network; Sep./Oct. 1998, pp. 40-48.

Plank J. S., “A Tutorial on Reed-Solomon Coding for Fault-Tolerance
I N Raid-Like Systems”, Software Practice & Experience, Wiley &
Sons, Bognor Regis, GB, vol. 27, No. 9, Sep. 1, 1997, pp. 995-1012,
XP00069594.

Pless and WC Huftfman EDSV S: Algebraic geometry codes, Hand-
book of Coding Theory, 1998, pp. 871-961, XP002300927.
Pursley, et al.: “Variable-Rate Coding for Meteor-Burst Communi-
cations,” IEEE Transactions on Communications, US, IEEE Inc.
New York (1989) vol. 37, No. 11, pp. 1105-1112 XP000074533.
Pursley, M. et al.: “A Correction and an Addendum for Variable-Rate
Coding for Meteor-Burst Communications,” IEEE Transactions on
Communications, vol. 43, No. 12 pp. 2866-2867 (Dec. 1995).

Pyle, et al., “Microsoft http smooth Streaming: Microsoft response to
the Call for Proposal on httpstreaming”, 93 MPEG Meeting; Jul. 26,
2010-Jul. 30, 2010; Geneva; (Motion Picture Expert Group or ISO/
IEC JTCL/SCE29/WGll1), No. MI17902, Jul. 22, 2010,
XP030046492.

QUALCOMM Europe S A R L: “Baseline Architecture and Defini-
tions for HTTP Streaming”, 3GPP Draft; S4-090603_HTTP__
Streaming_ Architecture, 3rd Generation Partnership Project
(3GPP), Mobile Competence Centre; 650, Route Des Lucioles;
F-06921 Sophia-Antipolis Cedex; France, No. Kista; Aug. 12, 2009,
XP050356889.

QUALCOMM Incorporated: “Use Cases and Examples for Adaptive
httpstreaming”, 3GPP Draft; S4-100408-USECASES-HSD, 3rd
Generation Partnership Project (JGPP), Mobile Competence Centre;
650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France,
vol. SA WG4, No. Prague, Czech Republic; Jun. 21, 2010, Jun. 17,
2010, XP050438085, [retrieved on Jun. 17, 2010].

Rangan, et al., “Designing an On-Demand Multimedia Service,”
IEEE Communication Magazine, vol. 30, pp. 56-64, (Jul. 1992).
Realnetworks Inc et al., “Format for HTTP Streaming Media Presen-
tation Description”, 3GPP Draft; S4-100020, 3rd Generation Part-
nership Project (3GPP), Mobile Competence Centre; 650, Route Des
Lucioles; F-06921 Sophia-Anti Polis Cedex; France, vol. SA WG4,
No. St Julians, Malta; Jan. 25, 2010, Jan. 20, 2010, XP050437753,
[retrieved on Jan. 20, 2010].

Research in Motion UK Limited: “An MPD delta file for httpstream-
ing”, 3GPP Draft; S4-100453, 3rd Generation Partnership Project
(SGPP), Mobile Competence Centre; 650, Route Des Lucioles;
F-06921 Sophia-Antipolis Cedex; France, vol. SAWG4, No. Prague,
Czech Republic; Jun. 21, 2010, Jun. 16, 2010, XP050438066,
[retrieved on Jun. 16, 2010].

Rhyu, et al., “Response to Call for Proposals on httpstreaming of
MPEG Media”, 93 MPEG Meeting; Jul. 26, 2010-Jul. 30, 2010;
Geneva; (Motion Picture Expert Group or ISO/IEC JTC1/SCE29/
WG11) No. M17779, Jul. 26, 2010, XP030046369.

Rizzo L. “Effective Erasure Codes for Reliable Computer Commu-
nication Protocols,” Computer Communication Review, 27 (2) pp.
24-36 (Apr. 1, 1997), XP000696916.

Roca, V. et al.: “Design, Evaluation and Comparison of Four Large
Block FEC Codecs, LDPC, LDGM, LDGM Staircase and LDGM
Triangle, plus a Reed-Solomon Small Block FEC Codec,” INRIA
Research Report RR-5225 (2004).

Roca, V., et, al. “Low Density Parity Check (LDPC) Staircase and
Triangle Forward Error Correction (FEC) Schemes”, IETF RFC
5170 (Jun. 2008), pp. 1-34.

Rost, S. et al., “The Cyclone Server Architecture: streamlining deliv-
ery of popular content,” 2002, Computer Communications, vol. 25,
No. 4, pp. 1-10.

Roth, R,, et al., “A Construction of Non-Reed-Solomon Type MDS
Codes”, IEEE Transactions of Information Theory, vol. 35, No. 3,
May 1989, pp. 655-657.

Roth, R., “On MDS Codes via Cauchy Matrices”, IEEE Transactions
on Information Theory, vol. 35, No. 6, Nov. 1989, pp. 1314-1319.
Roumy A., et al., “Unequal Erasure Protection and Object Bundle
Protection with the Generalized Object Encoding Approach”, Inria-
00612583, Version 1, Jul. 29, 2011, 25 pages.

Schulzrinne, et al., “Real Time Streaming Protocol (RTSP)” Network
Working Group, Request for Comments: 2326, Apr. 1998, pp. 1-92.
Seshan, S. et al., “Handoffs in Cellular Wireless Networks: The
Daedalus Implementation and Experience,” Wireless Personal Com-

US 9,236,887 B2
Page 7

(56) References Cited
OTHER PUBLICATIONS

munications, NL; Kluwer Academic Publishers, vol. 4, No. 2 (Mar. 1,
1997) pp. 141-162, XP000728589.

Shacham: “Packet Recovery and Error Correction in High-Speed
Wide-Area Networks,” Proceedings of the Military Communications
Conference. (Milcom), US, New York, IEEE, vol. 1, pp. 551-557
(1989) XP000131876.

Shierl T; Gruneberg K; Narasimhan S; Vetro A: “ISO/IEC 13818-
1:2007/FPDAM 4—Information Technology Generic Coding of
Moving Pictures and Audio Systems amendment 4: Transport of
Multiview Video over ITU-T Rec H.222.0 ISO/IEC 13818-1”ITU-T
Rec. H.222.0(May 2006)FPDAM 4, vol. MPEG2009, No. 10572,
May 11, 2009, pp. 1-20, XP002605067 p. 11, last two paragraphs
sections 2.6.78 and 2.6.79 table T-1.

Shokrollahi, A.: “Raptor Codes,” Internet Citation [Online] (Jan. 13,
2004) XP002367883, Retrieved from the Internet: URL:http://www.
cs.hyji.ac.il/labs/danss/p2p/resources/raptor.pdf.

Shokrollahi, Amin. “Raptor Codes,” IEEE Transactions on Informa-
tion Theory, Jun. 2006, vol. 52, No. 6, pp. 2551-2567, (search date:
Feb. 1, 2010) URL: <http://portal.acm.org/citation.
cfim"id=1148681>.

Shokrollahi et al., “Design of Efficient Easure Codes with Differen-
tial Evolution”, IEEE International Symposium on Information
Theory, Jun. 25, 2000, pp. 5-5.

Sincoskie, W. D., “System Architecture for Large Scale Video on
Demand Service,” Computer Network and ISDN Systems, pp. 155-
162, (1991).

Stockhammer T., et al., “DASH: Improvements on Representation
Access Points and related flags”, 97. MPEG Meeting; Jul. 18, 2011-
Jul. 22, 2011; Torino; (Motion Picture Expert Group or ISO/IEC
JTC1/SC29/WGI11) No. m20339, Jul. 24, 2011, XP030048903.
Stockhammer, “WD 0.1 of 23001-6 Dynamic Adaptive Streaming
over HTTP (DASH)”, MPEG-4 Systems, International Organisation
for Standardisation, ISO/IEC JTC1/SC29/WG1 1, Coding of Moving
Pictures and Audio, MPEG 2010 Geneva/m11398, Jan. 6, 2011, 16

pp.

Sullivan et al., Document: JVT-AA007, “Editors” Draft Revision to
ITU-T Rec. H.264IISO/IEC 14496-10 Advanced Video Coding—In
Preparation for ITU-T SG 16 AAP Consent (in integrated form),”
Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG (ISO/
IEC JTC1/SC29/WGI1 and ITU-T SG16 Q.6), 30th Meeting:
Geneva, CH, Jan. 29-Feb. 3, 2009, pp. 1-683, http://witp3.itu.int/av-
arch/jvt-site/2009__01_ Geneva/JTVT-ADO007.zip.

Sun, et al., “Seamless Switching of Scalable Video Bitstreams for
Efficient Streaming,” IEEE Transactions on Multimedia, vol. 6, No.
2, Apr. 2004, pp. 291-303.

Telefon AB LM Ericsson, et al., “Media Presentation Description in
httpstreaming”, 3GPP Draft; S4-100080-MPD, 3rd Generation Part-
nership Project (3GPP), Mobile Competence Centre; 650, Route Des
Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. SA WG4,
No. St Julians, Malta; Jan. 25, 2010, Jan. 20, 2010, XP050437773,
[retrieved on Jan. 20, 2010].

Todd, “Error Correction Coding: Mathematical Methods and Algo-
rithms”, Mathematical Methods and Algorithms, Jan. 1, 2005, pp.
451-534, Wiley, XP002618913.

Tsunoda T., et al., “Reliable Streaming Contents Delivery by Using
Multiple Paths,” Technical Report of The Institute of Electronics,
Information and Communication Engineers, Japan, Mar. 2004, vol.
103, No. 692, pp. 187-190, NS2003-331, IN2003-286.

U.S. Appl. No. 12/840,146, by Ying Chen et al., filed Jul. 20, 2010.
Fielding et al., “RFC 2616: Hypertext Transfer Protocol HTTP/1.17,
Internet Citation, Jun. 1999, pp. 165, XP002196143, Retrieved from
the Internet: URL:http://www.rfc-editor-org/ [retrieved on Apr. 15,
2002].

Gao, L. et al.: “Efficient Schemes for Broadcasting Popular Videos,”
Proc. Inter. Workshop on Network and Operating System Support for
Digital Audio and Video, pp. 1-13 (1998).

Gasiba, Tiago et al., “System Design and Advanced Receiver Tech-
niques for MBMS Broadcast Services” Proc. 2006 International Con-

ference on Communications (ICC 2006), Jun. 1, 2006, pp. 5444-
5450, XP031025781 ISBN: 978-1-4244-0354-7.

Gemmell, et al., “A Scalable Multicast Architecture for One-To-
Many Telepresentations”, Multimedia Computing and Systems,
1998/ Proceedings. IEEE International Conference on Austin, TX,
USA Jun. 28-Jul. 1, 1998, Los Alamitos, CA USA, IEEE Comput.
Soc, US, Jun. 28, 1998, pp. 128-139, XP010291559.

Gil A, etal., “Personalized Multimedia Touristic Services for Hybrid
Broadcast/Broadband Mobile Receivers,” IEEE Transactions on
Consumer Electronics, 2010, vol. 56 (1), pp. 211-219.

Goyal: “Multiple Description Coding: Compression Meets the Net-
work,” In Signal Processing Magazine, IEEE, vol. 18., Issue 5 (Sep.
2001) pp. 74-93 URL:http://www.rle.mit.edu/stir/documents/
Goyal__SigProcMag2001_ MD.pdf [Nov. 4, 2007].

Gozalvez D et, al: “Mobile reception of DVB-T services by means of
AL-FEC protection” Proc. IEEE Intern. Symposium on Broadband
Multimedia Systems and Broadcasting (BMSB ’09), IEEE,
Piscataway, NJ, USA, May 13, 2009, pp. 1-5, XP031480155 ISBN:
978-1-4244-2590-7.

Gracie et al., “Turbo and Turbo-Like Codes: Principles and Applica-
tions in Telecommunications”, Proceedings of the IEEE, Jun. 1,
2007, pp. 1228-1254, vol. 95, No. 6, IEEE, XP011189323, ISSN:
0018-9219, DOI: 10.1109/JPROC.2007.895197.

Hagenauer, J. : “Soft is better than hard” Communications, Coding
and Cryptology, Kluwer Publication May 1994, XP002606615
Retrieved from the Internet : URL: http://www. Int . ei .turn.
de/veroeffentlic hungen/1994/ccc94h. pdf [retrieved on Oct. 25,
2010].

Hannuksela M.M., et al., “DASH: Indication of Subsegments Start-
ing with SAP”, 97. MPEG Meeting; Jul. 18, 2011-Jul. 22, 2011;
Torino; (Motion Picture Expert Group or ISO/IEC JTC1/SC29/
WG11) No. m21096, Jul. 21, 2011, XP030049659.

Hannuksela M.M., et al., “ISOBMFF: SAP definitions and ‘sidx’
box”, 97. MPEG Meeting; Jul. 18, 2011-Jul. 22, 2011; Torino;
(Motion Picture Expert Group or ISO/IEC JTC1/SC29/WG11) No.
m21435, Jul. 22, 2011, XP030049998.

Hershey, et al., “Random Parity Coding (RPC)”, 1996 IEEE Interna-
tional Conference on Communications (ICC). Converging Technolo-
gies for Tomorrow’s Applications. Dallas, Jun. 23-27, 1996, IEEE
International Conference on Communications (ICC), New York,
IEEE, US, vol. 1, Jun. 23, 1996, pp. 122-126, XP000625654.

Hua, et al., “Skyscraper broadcasting: A new broadcsting system for
metropolitan video-on-demand systems”, Proc. ACM SIGCOMM,
pp. 89-100 (Cannes, France, 1997).

Huawei et al., “Implict mapping between CCE and PUCCH for
ACK/NACK TDD”, 3GPP Draft; R1-082359, 3rd Generation Part-
nership Project (3GPP), Mobile Competence Centre; 650, Route Des
Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, vol. RAN
WG1, No. Warsaw, Poland, Jun. 24, 2008, XP050110650, [retrieved
on Jun. 24, 2008].

IETF RFC 2733: Rosenberg, J. et al. “An RTP Payload Format for
Generic Forward Error Correction,” Network Working Group, RFC
2733 (Dec. 1999).

International Standard ISO/IEC 14496-12, Information Technol-
ogy—Coding of audio-visual objects—Part 12: ISO base media file
format, Third Edition, Oct. 15, 2008, 120 pp.

ISO/IEC 14996-12 International Standard, “Information technology-
Coding of audio-visual objects Part 12: ISO base media file format,”
Oct. 1, 2005, 94 pp.

ISO/IEC JTC 1/SC 29, ISO/IEC FCD 23001-6, Information technol-
ogy—MPEG systems technologies—Part 6: Dynamic adaptive
streaming over HTTP (DASH), Jan. 28, 2011.

ITU-T H.264, Series H: Audiovisual and Multimedia Systems, Infra-
structure of audiovisual services—Coding of moving video,
Advanced video coding for generic audiovisual services, The Inter-
national Telecommunication Union. Jun. 2011, 674 pp.

Jiang J., “File Format for Scalable Video Coding”, PowerPoint Pre-
sentation for CMPT 820, Summer 2008.

Jin Li, “The Efficient Implementation of Reed-Solomon High Rate
Erasure Resilient Codes” Proc. 2005 IEEE International Conference
onAcoustics, Speech, and Signal Processing, Philadelphia, PA, USA,

US 9,236,887 B2
Page 8

(56) References Cited
OTHER PUBLICATIONS

IEEE, Piscataway, NJ, vol . 3, Mar. 18, 2005, pp. 1097-1100,
XP010792442, DOT: 10.1109/ICASSP.2005.1415905 ISBN: 978-0-
7803-8874-1.

Juhn, L. et al.: “Adaptive Fast Data Broadcasting Scheme for Video-
on-Demand Service,” IEEE Transactions on Broadcasting, vol. 44,
No. 2, pp. 182-185 (Jun. 1998).

Juhn, L. et al.: “Harmonic Broadcasting for Video-on-Demand Ser-
vice,” IEEE Transactions on Broadcasting, vol. 43, No. 3, pp. 268-
271 (Sep. 1997).

Kallel, “Complementary Punctured Convolutional (CPC) Codes and
Their Applications”, IEEE Transactions on Communications, IEEE
Inc., New York, US, vol. 43, No. 6, Jun. 1, 1995, p. 2005-2009.
Kimura et al.,, “A Highly Mobile SDM-0FDM System Using
Reduced-Complexity-and-Latency Processing”, IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), Sep. 1, 2007, pp. 1-5, IEEE, XP031168836, ISBN: 978-
1-4244-1143-6, DOI: 10.1109/PIMRC.2007.4394758.

Kozamernik F: “Media streaming over the Internet”, Internet Cita-
tion, Oct. 2002, XP002266291, Retrieved from the Internet: URL:
http://www.ebu.ch/trev_ 292-kozamerni k. pdf [retrieved on Jan. 8,
2004] section “Video codecs for scalable streaming”.

Lee L., et al.,“VLSI implementation for low density parity check
decoder”, Proceedings of the 8th IEEE International Conference on
Elecctronics, Circuits and Systems, 2001. ICECS 2001, Sep. 2, 2001,
vol. 3, pp. 1223-1226.

Li, M, et al., “Playout Buffer and Rate Optimization for Streaming
over IEEE 802.11 Wireless Networks”, Aug. 2009, Worcester Poly-
technic Institute, USA.

Lin, S. et al.: “Error Control Coding-Fundamentals and Applica-
tions,” 1983, Englewood Cliffs, pp. 288, XP002305226.

Luby Digital Fountain A Shokrollahi Epfl M Watson Digital Fountain
T Stockhammer Nomor Research M: “Raptor Forward Error Correc-
tion Scheme for Object Delivery; rfc5053.txt”, IETF Standard,
Internet Engineering Task Force, IETF, CH, Oct. 1, 2007,
XP015055125, ISSN: 0000-0003.

Luby, et al., “Analysis of Low Density Codes and Improved Designs
Using Irregular Graphs”, 1998, Proceedings of the 30th Annual ACM
Symposium on Theory of Computing, May 23, 1998, pp. 249-258,
XP000970907.

Luby, et al.: “Analysis of Low Density Codes and Improved Designs
Using Irregular Graphs,” International Computer Science Institute
Technical Report TR-97-045 (Nov. 1997) [available at ftp:/ftp.icsi.
berkeley.edu/pub/techreports/1997/tr-97-045 pdf].

Luby, et al., “FLUTE -File Delivery over Unidirectional Transport”,
IETF RFC 3926, Oct. 2004, pp. 1-35.

Luby et al., “Improved Low-Density Parity-Check Codes Using
Irregular Graphs and Belief Propogation”, Information Theory, 1998.
Proceedings. 1998 IEEE International Symposium on Cambridge,
MA,USA Aug. 16-21, 1998, pp. 1-9, New York, NY, USA, IEEE, US.
Luby et, al. “Layered Coding Transport (LCT) Building Block”,
IETF RFC 5651, pp. 1-42, (Oct. 2009).

Luby et al., RaptorQ Forward Error Correction Scheme for Object
Delivery draft-ietf-rmt-bb-fec-raptorq-00, Qualcomm, Inc. Jan. 28,
2010.

Luby, M. et al.: “Efficient Erasure Correction Codes,” 2001, IEEE
Transactions on Information Theory, Vo. 47, No. 2, pp. 569-584,
XP002305225.

Luby, M, et, al. “Forward Error Correction (FEC) Building Block”,
IETF RFC 5052, pp. 1-31, (Aug. 2007).

Luby M et al: “IPTV Systems, Standards and Architectures: Part
II—Application Layer FEC in IPTV Services” IEEE Communica-
tions Magazine, IEEE Service Center, Piscataway, US LNKDDOIL:
10.1109/MCOM.2008.4511656, vol. 46, No. 5, May 1, 2008, pp.
94-101, XP011226858 ISSN: 0163-6804.

Luby, M. et al.: “Pairwise Independence and Derandomization,”
Foundations and Trends in Theoretical Computer Science, vol. 1,
Issue 4, 2005, Print ISSN 1551-305X, Online ISSN 1551-3068.

Luby, M. et al., “Practical Loss-Resilient Codes: Tornado Codes,”
29th Annual ACM Symposium on Theory of Computing, vol. SYMP.
29, May 4, 1997, pp. 150-159, XP002271229.

Luby, M., et al., “Raptor Forward Error Correction Scheme for
Object Delivery”, IETF RFCS5053, pp. 1-46 (Sep. 2007).

Luby M. et al., “RaptorQ Forward Error Correction Scheme for
Object Delivery”, IETF draft ietf-rmt-bb-fec-raptorq-04, Reliable
Multicast Transport, Internet Engineering Task Force (IETF), Stan-
dard Workingdraft, Internet Society (ISOC), Aug. 24, 2010, pp. 1-68,
XP015070705, [retrieved on Aug. 24, 2010].

Luby, M., et al., “Request for Comments: 3453: The Use of Forward
Error Correction (FEC) in Reliable Multicast,” Internet Article,
[Online] Dec. 2002, pp. 1-19.

Luby, Michael G. “Analysis of Random Processes via and-or Tree
Evaluation,” Proceedings of the 9th Annual ACM-SIAM Symposium
on Discrete Algorithms,TR-97-0, 1998, pp. 364-373, (search date:
Jan. 25, 2010) URL: <http://portal.acm.prg.citation.
cfm"id=314722>.

Luby QUALCOMM Incorporated, “Universal Object Delivery using
RaptorQ; draft-luby-uod-raptorq-OO.txt”, Internet Engineering Task
Force (IETF), Standardworkingdraft, Internet Society (ISOC), Mar.
7,2011, pp. 1-10, XP015074424, [retrieved on Mar. 7, 2011].
MacKay, “Fountain codes Capacity approaching codes design and
implementation”, IEE Proceedings: Communications, Dec. 9, 2005,
pp. 1062-1068, vol. 152, No. 6, Institution of Electrical Engineers,
XP006025749, ISSN: 1350-2425, DOL 10.1049/1P-
COM:20050237.

Mandelbaum D.M., “An Adaptive-Feedback Coding Scheme Using
Incremental Redundancy”, IEEE Trans on Information Theory, vol.
May 1974, pp. 388-389, XP002628271, the whole document.
Matsuoka H., et al., “Low-Density Parity-Check Code Extensions
Applied for Broadcast-Communication Integrated Content Deliv-
ery”, Research Laboratories, NTT DOCOMO, Inc., 3-6, Hikari-No-
Oka, Yokosuka, Kanagawa, 239-8536, Japan, ITC-SS21, 2010
IEICE, pp. 59-63.

Michael G et al., “Improved low-density parity-check codes using
irregular graphs”, Information Theory, IEEE Transactions on,Feb.
2001,vol. 47, No. 2,pp. 585-598.

3rd Generation Partnership Project; Technical Specification Group
Services and System Aspects; Transparent end-to-end Packet-
switched Streaming Service (PSS); Progressive Download and
Dynamic Adaptive Streaming over HTTP (3GP-DASH) (Release
10), 3GPP Standard; 3GPP TS 26.247, 3rd Generation Partnership
Project (3GPP), Mobile Competence Centre ; 650, Route Des
Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, vol. SA WG4,
No. V10.0.0, Jun. 17, 2011, pp. 1-94, XP050553206, [retrieved on
Jun. 17, 2011].

Atis: “PTV Content on Demand Service”, IIF-WT-063R44, Nov. 11,
2010, pp. 1-124, XP055045168, Retrieved from the Internet:
URL:ftp://vqeg.its.bldrdoc.gov/Documents/VQEG__Atlanta__
Nov10/MeetingFiles/Liaison/IIF-WT-063R44_ Content__on_ De-
mand.pdf [retrieved on Nov. 22, 2012].

International Search Report and Written Opinion—PCT/US2012/
053394—ISA/EPO—Feb. 6, 2013.

U.S. Appl. No. 13/205,559, by Ying Chen et al., filed Aug. 8, 2011.
Viswanathan,Subramaniyam R., “Publishing in Wireless and
Wireline Environments,” Ph. D Thesis, Rutgers, The State University
of New Jersey (Nov. 1994), 180pages.

Wiegand, T., et al., “WD2: Working Draft 2 of High-Efficiency Video
Coding”, Jan. 28, 2011, No. JCTVC-D503, Jan. 28, 2011,
XP002679642, Retrieved from the Internet: URL: http://witp3.itu.
int/av-arch/jctve-site/2011_01_D_ Daegu/ [retrieved on Jul. 11,
2012].

International Search Report, PCT/US2005/016334—International
Search Authority—Furopean Patent Office, Sep. 12, 2006.

Written Opinion, PCT/US2005/016334—International Search
Authority—FEuropean Patent Office, Sep. 12, 2006.

Supplementary European Search Report, EP05747947—European
Search Authority—Munich, Mar. 19, 2007.

3GPP TS 26.234V9.1.0 ,“3rd Generation Partnership Project; Tech-
nical Specification Group Services and System Aspects; Transparent
end-to-end Packet-switched Streaming Service (PSS); Protocols and
codecs (Release 9)”, Dec. 2009, 179 pages.

US 9,236,887 B2
Page 9

(56) References Cited
OTHER PUBLICATIONS

3GPP TS 26.244 V9.1.0, 3rd Generation Partnership Project; Tech-
nical Specification Group Services and System Aspects; Transparent
end-to-end packet switched streaming service (PSS); 3GPP file for-
mat (3GP), (Release 9), Mar. 2010, 55 pp.

3GPP TS 26.247, v1.5.0, 3rd Generation Partnership Project; Tech-
nical Specification Group Services and System Aspects Transparent
end-to-end Packet-switched Streaming Service (PSS); Progressive
Download and Dynamic Adaptive Streaming over HTTP (3GP-
DASH) (Release 10), 2010, 91 pages.

3rd Generation Partnership Project, Technical Specification Group
Services and System Aspects Transparent end-to-end packet
switched streaming service (PSS), 3GPP file format (3GP) (Release
9), 3GPP Standard, 3GPP TS 26.244, 3rd Generation Partnership
Project (3GPP), Mobile Competence Centre , 650, Route Des
Lucioles , F-06921 Sophia-Antipolis Cedex , France, No. V8.1.0,
Jun. 1, 2009, pp. 1-52, XP050370199.

3rd Generation Partnership Project; Technical Specification Group
Services and System Aspects; Transparent end-to-end packet
switched streaming service (PSS); 3GPP file format (3GP) (Release
9), 3GPP Standard; 3GPP TS 26.244, 3rd Generation Partnership
Project (3GPP), Mobile Competence Centre; 650, Route Des
Lucioles; F-06921 Sophia-Antipolis Cedex; France, No. V9.2.0, Jun.
9, 2010, pp. 1-55, XP050441544, [retrieved on Jun. 9, 2010].
Aggarwal, C. et al.: “A Permutation-Based Pyramid Broadcasting
Scheme for Video-on-Demand Systems,” Proc. IEEE Int’l Conf. on
Multimedia Systems, Hiroshima, Japan (Jun. 1996).

Aggarwal, C. et al.: “On Optimal Batching Policies for Video-on-
Demand Storage Servers,” Multimedia Systems, vol. 4, No. 4, pp.
253-258 (1996).

Albanese, A., et al., “Priority Encoding Transmission”, IEEE Trans-
actions on Information Theory, vol. 42, No. 6, pp. 1-22, (Nov. 1996).
Alex Zambelli,“IIS Smooth Streaming Technical Overview”,
Microsoft Mar. 25, 2009, XP002620446, Retrieved from the Internet:
URL :http://www.microsoft.com/downloads/en/ details.
aspx"FamilylD=03d22583-3ed6-44da-8464-blb4b5ca7520,
[retrieved on Jan. 21, 2011].

Almeroth, et al., “The use of multicast delivery to provide a scalable
and interactive video-on-demand service”, IEEE Journal on Selected
Areas in Communication, 14(6): 1110-1122, (1996).

Alon, et al.: “Linear Time Erasure Codes with Nearly Optimal
Recovery,” Proceedings of the Annual Symposium on Foundations of
Computer Science, US, Los Alamitos, IEEE Comp. Soc. Press, vol.
Symp. 36, pp. 512-516 (Oct. 23, 1995) XP000557871.

Amin Shokrollahi: “LDPC Codes: An Introduction” Internet Citation
2 Apr. 1, 2003 (Apr. 2, 2003), XP002360065 Retrieved from the
Internet: URL : http ://www . ipm. ac . it/IPM/homepage/ Amin 2. pdf
[retrieved on Dec. 19, 2005].

Amon P et al.,, “File Format for Scalable Video Coding”, IEEE
Transactions on Circuits and Systems for Video Technology, IEEE
Service Center, Piscataway, NJ, US, vol. 17, No. 9, Sep. 1, 2007, pp.
1174-1185, XP011193013, ISSN: 1051-8215, DOI:10.1109/
TCSVT.2007.905521.

Anonymous: [Gruneberg, K., Narasimhan, S. and Chen, Y., editors]
“Text of ISO/IEC 13818-1:2007/PDAM 6 MVC operation point
descriptor”, 90 MPEG Meeting; Oct. 26, 2009-Oct. 30, 2009; XIAN;
(Motion Picture Expertgroup or ISO/IEC JTC1/SC29/WG111l), No.
N10942, Nov. 19, 2009, XP030017441.

Anonymous: “Technologies under Consideration”, 100. MPEG
Meeting;Apr. 30, 2012-May 4, 2012; Geneva; (Motion Picture
Expert Group or ISO/IEC JTC1 /SC29/WGl1),, No. N12682, Jun. 7,
2012, XP030019156.

Anonymous: “Text of ISO/IEC 14496-12 3rd Edition”, 83 MPEG
Meeting; Jan. 14, 2008-Jan. 18, 2008; Antalya; (Motion
Pictureexpert Group or ISO/IEC JTC1/SC29/WGL1), No. N9678,
Apr. 22, 2008, XP030016172.

Anonymous: “Text of ISO/IEC 14496-15 2nd edition”, 91 MPEG
Meeting; Jan. 18, 2010-Jan. 22, 2010; Kyoto; (Motion Picture
Expertgroup or ISO/IEC JTC1/SC29/WG11),, No. N11139, Jan. 22,
2010, XP030017636, ISSN: 0000-0030 the whole document.

Bar-Noy, et al., “Competitive on-line stream merging algorithms for
media-on-demand”, Draft (Jul. 2000), pp. 1-34.

Bar-Noy et al. “Efficient algorithms for optimal stream merging for
media-on-demand,” Draft (Aug. 2000), pp. 1-43.

Bigloo, A. et al.: “A Robust Rate-Adaptive Hybrid ARQ Scheme and
Frequency Hopping for Multiple-Access Communication Systems,”
IEEE Journal on Selected Areas in Communications, US, IEEE Inc,
New York (Jun. 1, 1994) pp. 889-893, XP000464977.

Bitner, J.R., et al.: “Efficient Generation ofthe Binary Reflected Gray
code and Its Applications,” Communications of the ACM pp. 517-
521, vol. 19 (9), 1976.

Blomer, et al., “An XOR-Based Erasure-Resilient Coding Scheme,”
ICSI Technical Report No. TR-95-048 (1995) [avail. at ftp:/ftp.icsi.
berkeley.edu/pub/techreports/1995/tr-95-048 pdf].

Bross, et al., “High efficiency video coding (HEVC) text specifica-
tion draft 6,” Joint Collaborative Team on Video Coding (JCT-VC) of
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 JCTVC-H1003,
7th Meeting: Geneva, CH, Nov. 21-30, 2011, pp. 259.

Bross, et al., “High efficiency video coding (HEVC) text specifica-
tion draft 7,” Joint Collaborative Team on Video Coding (JCT-VC) of
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 9th Meeting:
Geneva, CH, Apr. 27-May 7, 2012, JCTVC-11003__d2, 290 pp.
Bross, et al., “High efficiency video coding (HEVC) text specifica-
tion draft 8,” Joint Collaborative Team on Video Coding (JCT-VC) of
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WGl1 10th Meeting:
Stockholm, SE, Jul. 11-20, 2012, JCTVC-J1003_d7, pp. 261.
Bross, et al., “WD4: Working Draft 4 of High-Efficiency Video
Coding,” JCTVC-F803_d2, (JCT-VC) of ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WGL1 Joint Collaborative Team on Video
Coding, 6th Meeting, Torino, IT, Jul. 14-22, 2011, 226 pages.
Bross, et al., “WDS5: Working Draft 5 of High-Efficiency Video
Coding,” JCTVC-G1103_d2, (JCT-VC) of ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WGL1 Joint Collaborative Team on Video
Coding, 7th Meeting, Geneva, Switzerland (Nov. 2011), 214 pages.
Byers, J.W. et al.: “A Digital Fountain Approach to Reliable Distri-
bution of Bulk Data,” Computer Communication Review, Associa-
tion for Computing Machinery. New York, US, vol. 28, No. 4 (Oct.
1998) pp. 56-67 XP000914424 ISSN:0146-4833.

Byers, J.W. et al.: “Accessing multiple mirror sites in parallel: using
Tornado codes to speed up downloads,” 1999, Eighteenth Annual
Joint Conference of the IEEE Comupter and Communications Soci-
ties, pp. 275-283, Mar. 21, 1999, XP000868811.

Cataldi et al., “Sliding-Window Raptor Codes for Efficient Scalable
Wireless Video Broadcasting With Unequal Loss Protection”, IEEE
Transactions on Image Processing, Jun. 1, 2010, pp. 1491-1503, vol.
19, No. 6, IEEE Service Center, XP011328559, ISSN: 1057-7149,
DOI: 10.1109/TIP.2010.2042985.

Charles Lee L.H, “Error-Control Block Codes for Communications
Engineers”, 2000, Artech House, XP002642221 pp. 39-45.

Chen et al., “Response to the CfP on HTTP Streaming: Adaptive
Video Streaming based on AVC”, 93. MPEG Meeting; Jul. 26, 2010-
Jul. 30, 2010; Geneva, (Motion Picture Expert Group or ISO/IEC
JTC1/SC29/WGl1), No. M17909, Jul. 26, 2010, XP030046499.
Choi S: “Temporally enhanced erasure codes for reliable communi-
cation protocols” Computer Networks, Elsevier Science Publishers
B.V., Amsterdam, NL, vol. 38, No. 6, Apr. 22, 2002, pp. 713-730,
XP004345778, ISSN: 1389-1286, DOI:10.1016/S1389-
1286(01)00280-8.

Clark G.C., et al., “Error Correction Coding for Digital Communi-
cations, System Applications,” Error Correction Coding for Digital
Communications, New York, Plenum Press, US, Jan. 1, 1981, pp.
331-341.

D. Gozalvez etal. “AL-FEC for Improved Mobile Reception of
MPEG-2 DVB-Transport Streams” Hindawi Publishing Corpora-
tion, International Journal of Digital Multimedia Broadcasting vol.
2009, Dec. 31, 2009, pp. 1-10, XP002582035 Retrieved from the
Internet: URL:http://www.hindawi.com/journals/ijdmb/ 2009/
614178 html> [retrieved on May 12, 2010].

Dan, A. et al.: “Scheduling Policies for an On-Demand Video Server
with Batching,” Proc. ACM Multimedia, pp. 15-23 (Oct. 1998).
Davey, M.G. et al.: “Low Density Parity Check Codes over GF(q)”
IEEE Communications Letters, vol. 2, No. 6 pp. 165-167 (1998).

US 9,236,887 B2
Page 10

(56) References Cited
OTHER PUBLICATIONS

Digital Fountain: “Specification Text for Raptor Forward Error Cor-
rection,” TDOC S4-050249 of 3GPP TSG SA WG 4 Meeting #34
[Online] (Feb. 25, 2005) pp. 1-23, XP002425167, Retrieved from the
Internet: URL:http://www.3gpp.org/ftp/tsgsa/WG4_CODEC/
TSGS4_34/Docs.

Digital Fountain: “Raptor code specification for MBMS file down-
load,” 3GPP SA4 PSM AD-HOC #31 (May 21, 2004) XP002355055
pp. 1-6.

“Digital Video Broadcasting (DVB); Guidelines for the implemen-
tation of DVB-IP Phase 1 specifications; ETSI TS 102 542” ETSI
Standards, LIS, Sophia Antipoliscedex, France, vol. BC,No.V1.2.1,
Apr. 1, 2008, XP014041619 ISSN: 0000-0001 p. 43 p. 66 pp. 70, 71.
DVB-IPI Standard: DVB BlueBook A086r4 (Mar. 2007) Transport of
MPEG 2 Transport Streatm (TS) Based DVB Services over IP Based
Networks, ETSI Technical Specification 102 034 v1.3.1.

Eager, et al. “Minimizing bandwidth requirements for on-demand
data delivery,” Proceedings of the International Workshop on
Advances in Multimedia Information Systems,p. 80-87 (Indian
Wells, CA Oct. 1999).

Eager, et al., “Optimal and efficient merging schedules for video-on-
demand servers”, Proc. ACM Multimedia, vol. 7, pp. 199-202 (1999).
Esaki, et al.: “Reliable IP Multicast Communication Over ATM Net-
works Using Forward Error Correction Policy,” IEICE Transactions
on Communications, JP, Institute of Electronics Information and
Comm. ENG. Tokyo, vol. E78-V, No. 12, (Dec. 1995), pp. 1622-
1637, XP000556183.

European Search Report—EP10002379, Search Authority—Munich
Patent Office, May S, 2010.

Feng, G., Error Correcting Codes over Z2m for Algorithm-Based
Fault-Tolerance, IEEE Transactions on Computers, vol. 43, No. 3,
Mar. 1994, pp. 370-374.

Fernando, et al., “httpstreaming of MPEG Media—Response to
CfP”, 93 MPEG Meeting; Jul. 26, 2010-Jul. 30, 2010; Geneva,
(Motion Picture Expert Group or ISO/IEC JTC1/SCE29/WG11), No.
M17756, Jul. 22, 2010, XP030046346.

U.S. Appl. No. 12/908,537, by Ying Chen et al., filed Oct. 20, 2010.
U.S. Appl. No. 12/908,593, by Ying Chen et al., filed Oct. 20, 2010.
U.S. Appl. No. 13/082,051, by Ying Chen et al., filed Apr. 7, 2011.
U.S. Appl. No. 13/205,559, by Ying Chen et al., filed Aug. 8 2011.
U.S. Appl. No. 13/205,565, by Ying Chen et al., filed Aug. 8, 2011.
U.S. Appl. No. 13/205,574, by Ying Chen et al., filed Aug. 8, 2011.
Viswanathan, et al., “Metropolitan area video-on-demand services
using pyramid broadcasting”, Multimedia Systems, 4(4): 197-208
(1996).

Viswanathan, et al., “Pyramid Broadcasting for Video-on-Demand
Service”, Proceedings of the SPIE Multimedia Computing and Net-
working Conference, vol. 2417, pp. 66-77 (San Jose, CA, Feb. 1995).
Viswanathan, Subramaniyam R., “Publishing in Wireless and
Wireline Environments,” Ph. D Thesis, Rutgers, The State University
of New Jersey (Nov. 1994), 180pages.

Wadayama T, “Introduction to Low Density Parity Check Codes and
Sum-Product Algorithm,” Technical Report of the Institute of Elec-
tronics, Information and Communication Engineers, Dec. 6, 2001,
vol. 101, No. 498, pp. 39-46, MR2001-83.

Watson, M., et, al. “Asynchronous Layered Coding (ALC) Protocol
Instantiation”, IETF RFC 5775, pp. 1-23, (Apr. 2010).

Wiegand, T., et al., “WD2: Working Draft 2 of High-Efficiency Video
Coding”, 20110128, No. JCTVC-D503, Jan. 28, 2011,
XP002679642, Retrieved from the Internet: URL: http://witp3.itu.
int/av-arch/jctvesite/2011_01_D_ Daegu/ [retrieved on Jul. 11,
2012].

Wiegand, T., et al., “WD3: Working Draft 3 of High-Efficiency Video
Coding,” Document JCTVC-E603, 5th Meeting: Geneva, CH, Mar.
16-23,2011,pp. 193.

Wiegand, T., et al.,“WD1: Working Draft 1 of High-Efficiency Video
Coding”, JCTVC-C403, Joint Collaborative Team on Video Coding
(JCT-VC), of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WGl1,
3rd Meeting: Guangzhou, CN, Oct. 7-15, 2010.

Wong, J.W., “Broadcast delivery”, Proceedings of the IEEE, 76(12):
1566-1577, (1988).

Yamanouchi N., et al., “Internet Multimedia Transmission with
Packet Recovery by Using Forward Error Correction,” Proceedings
of DPS Workshop, The Information Processing Society of Japan,
Dec. 6, 2000, vol. 2000, No. 15, pp. 145-150.

Yamauchi, Nagamasa. “Application of Lost Packet Recovery by
Front Error Correction to Internet Multimedia Transfer” Proceedings
of Workshop for Multimedia Communication and Distributed Pro-
cessing, Japan, Information Processing Society of Japan (IPS), Dec.
6, 2000, vol. 2000, No. 15, pp. 145-150.

Yamazaki M., et al., “Multilevel Block Modulation Codes Construc-
tion of Generalized DFT,” Technical Report of the Institute of Flec-
tronics, Information and Communication Engineers, Jan. 24, 1997,
vol. 96, No. 494, pp. 19-24, 1T96-50.

Yin et al., “Modified Belief-Propogation algorithm for Decoding of
Irregular Low-Density Parity-Check Codes”, Electronics Letters,
IEE Stevenage, GB, vol. 38, No. 24, Nov. 21, 2002, pp. 1551-1553.
Zorzi, et al.: “On the Statistics of Block Errors in Bursty Channels,”
IEEE Transactions on Communications, vol.45,No. 6, Jun. 1997, pp.
660-667.

3GPP: “3rd Generation Partnership Project; Technical Specification
Group Services and system Aspects; Multimedia Broadcast/
Multicast Service (MBMS); Protocols and codecs (Release 6)”,
Sophia Antipolis, France, Jun. 1, 2005, XP002695256, Retrieved
from the Internet: URL:http://www.etsi.org/deliver/etsi_ ts/
126300__126399/126346/06.01.00__60/ts__126346v06010 Op.pdf.
Anonymous: “Technologies under Consideration”, 98. MPEG Meet-
ing; Nov. 28, 2011-Feb. 12, 2011; Geneva; (Motion Picture Expert
Group or ISO/IEC JTC1/SC29/WG11), No. N12330, Dec. 3, 2011,
XP030018825.

Anonymous: “Text of ISO/IEC IS 23009-1 Media Presentation
Description and Segment Formats”, 98. MPEG Meeting; Nov.
28-Feb. 12, 2012; Geneva; (Motion Picture Expert Group or ISO/IEC
JTC1/SC29/WGl1), No. N12329, Jan. 6, 2012, XP030018824.
Bouazizi I, et al., “Proposals for ALC/FLUTE server file format
(14496-12Amd.2)”, 77. MPEG Meeting; Jul. 17, 2006-Jul. 21, 2006,
Klagenfurt; (Motion Pictureexpert Group or ISO/IEC JTC1/SC29/
WG11), no. M13675, Jul. 12, 2006, XP030042344, ISSN: 0000-
0236.

“Digital Video Broadcasting (DVB); Framing structure, channel cod-
ing and modulation for digital terrestrial television; ETSI EN 300
744” ETSI Standards, LIS, Sophia Antipolis Cedex, France, V1.6.1,
pp. 9, Jan. 10, 2009.

Frojdh P, et al., “Study on 14496-12:2005/PDAM2 ALU/FLUTE
Server File Format”, 78 MPEG Meeting; Oct. 23, 2006-Oct. 27,
2006; Hangzhou: (Motion Picturexpert Group or ISO/IEC JTC1/
SC29/WG11), No. M13855, Oct. 13, 2006, XP030042523, ISSN:
0000-0233.

Kim J., et al., “Enhanced Adaptive Modulation and Coding Schemes
Based on Multiple Channel Reportings for Wireless Multicast Sys-
tems”, 62nd IEEE Vehicular Technology Conference, Vtc-2005-Fall,
25-28 Sep. 2005, vol. 2, pp. 725-729, XP010878578, Doi: 1 0.11
09/Vetecf.2005.1558019, Isbn: 978-0/7803-9152-9.

Moriyama, S., “S. Present Situation of Terrestrial Digital Broadcast-
ing in Europe and USA”, Journal of the Institute of Image Informa-
tion and Television Engineers, Nov. 20, 1999, vol. 53, No. 11, pp.
1476-1478.

Motorola et al: “An Analysis of DCD Channel Mapping to BCAST
File Delivery Sessions; OMA-CD-DCD-2007-0112-INP_DCD__
Channel_Mapping_ to_ BCAST_ File_ Delivery”, OMA-CD-
DCD-2007-0112-INP_DCD_ Channel Mappi Ng to_ BCAST__
File Delivery, Open Mobile Alliance (OMA), 4330 La Jolla Village
Dr., Suite 110 San Diego, CA 92122; USA Oct. 2, 2007, pp. 1-13,
XP064036903.

“RaptorQ Technical Overview”, Qualcomm Incorporated, pp. 1-12
(Oct. 1, 2010).

Universal Mobile Telecommunications System (UMTS); LTE;
Transparent end-to-end Packet-switched Streaming Service (PSS);
Protocols and codecs (3GPP TS 26.234 version 9.3.0 Release 9),
Technical Specification, European Telecommunications Standards
Institute (ETSI), 650, Route Des Lucioles; F-06921 Sophia-
Antipolis; France, vol. 3GPP SA, No. V9.3.0, Jun. 1, 2010,

US 9,236,887 B2
Page 11

(56) References Cited
OTHER PUBLICATIONS

XP014047290, paragraphs [5.54.2], [5.5.4.3], [5.5.4.4], [54.5],
[5.5.4.6] paragraphs [10.2.3], [11.2.7], [12.2.3], [12.4.2], [12.6.2]
paragraphs [12.6.3], [12.6.3.1], [12.6.4], [12.6.6].

Bross, et al., “High efficiency video coding (HEVC) text specifica-
tion draft 6,” JCTVC-H1003, Joint Collaborative Team on Video
Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/
WG11, 8th Meeting: San José, CA, USA, Feb. 1-10, 2012, 259 pp.
Makoto N., et al., “On Tuning of Blocking LU decomposition for
VP2000 series” The 42th Information Processing Society of Japan
Conference (1st term in 1991), Feb. 25, 1991, pp. 71-72, 4B-8.
Miller G., et al., “Bounds on the maximum likelihood decoding error
probability of low density parity check codes”, Information Theory,
2000. Proceedings. IEEE International Symposium on, 2000, p. 290.
Muramatsu J., et al., “Low density parity check matrices for coding of
multiple access networks”, Information Theory Workshop, 2003.
Proceedings. 2003 IEEE, Apr. 4, 2003, pp. 304-307.

Samukawa, H. “Blocked Algorithm for LU Decomposition” Journal
of the Information Processing Society of Japan, Mar. 15, 1993, vol.
34, No. 3, pp. 398-408.

3GPP TSG-SA4 #57 S4-100015, IMS based PSS and MBMS User
Service extensions, Jan. 196, 2010, URL : http://www.3gpp.org/ftp/
tsg_sa/WG4_CODEC/TSGS4 57/docs/S4-100015 .zip.

3rd Generation Partnership Project; Technical Specification Group
Services and System Aspects; Transparent end-to-end Packet-
switched Streaming Service (PSS);Protocols and codecs(Release 9)
3GPP TS 26.234V9.3.0, Jun. 23, 2010 p. 85-102, URL,http://www.
3gpp.org/ttp/TSG_SA/WG4 CODEC/TSGS4__59/Docs/S4-
100511.zip, 26234-930.zip.

Lee, 1.Y., “Description of Evaluation Experiments on ISO/IEC
23001-6, Dynamic Adaptive Streaming over Http”, ISO/IEC JTC1/
SC29/WG11MPEG2010/N11450, Jul. 31, 2010, 16 pp.

Luby M., “Simple Forward Error Correction (FEC) Schemes,” draft-
luby-rmt-bb-fec-supp-simple-00.txt, pp. 1-14, Jun. 2004.

Luby M., “LT Codes”, Foundations of Computer Science, 2002,
Proceedings, The 43rd Annual IEEE Symposium on, 2002.

Morioka S., “A Verification Methodology for Error Correction Cir-
cuits over Galois Fields”, Tokyo Research Laboratory, IBM Japan
Ltd, pp. 275- 280, Apr. 22-23, 2002.

Qualcomm Incorporated: “Adaptive HITP Streaming: Complete
Proposal”, 3GPP TSG-SA4 AHI Meeting S4-AHI170, Mar. 2, 2010,
URL, http://www.3gpp.org/FTP/tsg_ sa/WG4_CODEC/Ad-hoc__
MBS/Docs_ AHI/S4-AHI170.zip, S4- AH170_CR_ AdaptiveHT-
TPStreaming-Full.doc.

Qualcomm Incorporated: “Corrections to 3GPP Adaptive HTTP
Streaming”, 3GPP TSG-SA4 #59 Change Request 26.234 CR0172
S4-100403, Jun. 16, 2010, URL, http://www.3gpp.org/FTP/tsg_sa/
WG4_CODEC/TSGS4__59/Docs/54-100403 .zip, S4-100403__
CR__26234-0172-AdaptiveHTTPStreaming-Rel-9.doc.

Gerard F., et al.,, “HTTP Streaming MPEG media—Response to
CFP”, 93. MPEG Meeting, Geneva Jul. 26, 2010 to Jul. 30, 2010.
Chikara S., et al., “ Add-on Download Scheme for Multicast Content
Distribution Using Lt Codes”, Ieice. B, Communications, 2006/08/
01, J89-B (8), pp. 1379-1389.

Hasan M a., et al., “Architecture for a Low Complexity Rate-Adap-
tive Reed-Solomon Encoder”, IEEE Transactions on Computers,
IEEE Service Center, Los Alamitos, Ca, US, vol. 44,no.7, 1 Jul. 1995
(1995-07-01), pp. 938-942, XP000525729, Issn: 0018-9340, Doi:
10.1109/12.392853.

Tetsuo M., et al., “ Comparison of Loss Resilient Ability between
Multi-Stage and Reed-Solomon Coding”, Technical report of IEICE.
CQ, Communication Quality, vol. 103 (178), Jul. 4, 2011, pp. 19-24.
Watson M., et al., “Forward Error Correction (FEC) Fraework draft-
ietf-fecframe-framework-11,” 2011, pp. 1-38, URL http://tools.ietf.
org/pdf/draft-ietf-fecframe-framework-11.pdf.

Watson M., et al., “Raptor FEC Schemes for FECFRAME draft-ietf-
fecframe-raptor-04,” 2010, pp. 1-21, URL,http://tools.ietf.org/pdf/
draft-ietf-fecframe-raptor-04.pdf.

Qualcomm Incorporated: “RatorQ Forward Error Correction
Scheme for Object Delivery draft-ietf-rmt-bb-fec-raptorq-04~,
Internet Engineering Task Force, IETF, pp. 1-68, Aug. 24, 2010.
Ramsey B, “HTTP Status: 206 Partial Content and Range Requests,”
May 5, 2008 obtained at http://benramsey.com/blog/2008/05/206-
partial-content-and-range-requests/.

* cited by examiner

U.S. Patent Jan. 12, 2016 Sheet 1 of 17 US 9,236,887 B2

RANDOM 135

100 NUMBER |~
\v GENERATOR
A 4 A 4
STATIC 130/ DYNAMIC 120
KEY o KEY -
101 o GENERATOR GENERATOR
C::fi:? = So. S1, ... ly, Iy by o
INPUT > | i
FILE I1S(0), IS(1),
— INPUT 1S(2). 115
105 SYMBOL » ENCODER |~
GENERATOR
INPUT K —»
FILE >
STREAM
B(l,), B(l,). B(L,), -
\ 4 \ 4
140
TRANSMIT MODULE |~
_130 2> v
RANDOM 145
STATIC KEY P NUMBER CHANNEL
GENERATOR GENERATOR i
165 So, S1, ... 150
185 RECEIVE MODULE [~
1S(0), I1S(1), l
INPUT FILE 1S(2),...
< DECODER |«
REASSEMBLER B(l,). B(l,). B(), -
A
T 160
i
K, R DYNAMIC KEY
y Lol REGENERATOR

pr der 7

—"s"1 170 a’
INPUT
FILE

Figure 1

U.S. Patent Jan. 12, 2016 Sheet 2 of 17 US 9,236,887 B2

115\'

205
L
1S(0), 1IS(1), IS (2), ... , IS(K-1)
o 1y 1,
So. S1. ...
l 210 220
A 4 = =
STATIC | DYNAMIC
K ™ ENCODER » ENCODER
RE(0), RE(1),
..., RE(R-1)
T Y
R
| v
230
~ B(l,), B(L,), B(l,), -
REDUNDANCY KR
K =™ CALCULATOR n

Figure 2

U.S. Patent Jan. 12, 2016 Sheet 3 of 17 US 9,236,887 B2

300 ~

305
j=0
310
\ 4
RE(0) = Fo(I1S(0), ..., IS(K-1))
315
\ 4

END j

RE(j) = Fi(1S(0), ..., IS(K-1), RE(0), ... RE(j-1))

Figure 3

U.S. Patent Jan. 12, 2016 Sheet 4 of 17 US 9,236,887 B2
205
1S | 1S(1) | ... IS(K-1) | RE@) | ... REGNH| 2 | ... ?
Fi
RE()
l 205
1S | 1Is) | ... ISK-1) | RECO) | ... REG-1) | REG) | ... 2 P

Figure 4

U.S. Patent Jan. 12, 2016 Sheet 5 of 17 US 9,236,887 B2

POSITIONS
0 1 2 K-1 K K+R-1
505
1IS) [1s(y [18@2)| ... IS(K-1) | RE(©Q) | wovvov.. RE(R-1) I~
219 SYMBOL BUFFER
| AL(D)
~! ASSOCIATOR
K+R —p
+ wo) v 9%
[Q— >
wW(l
S\é\{_EEIg'}I'—i(;R ® | cALcULATOR
K+R —» 510 >
%0 B(l)
FUNCTION
K+R —» SELECTOR Output
Symbols
Figure 5
POSITION 0 1 2 3 4 K+R-2 K+R-1 505
VALUE | 1S(0) | IS(1) | 1S(2) | 1S(3) | IS(4) RE(R-2)|RE(R-1)

B()

Figure 6

U.S. Patent Jan. 12,

K

2016 Sheet 6 of 17

600 ~

625

s

1S(0), IS(1), 1S (2), ..., IS

(K-1)

HAMMING

So, S1, ...

US 9,236,887 B2

620
P

LDPC

ENCODER

D (numb
symbols
minus 1)

605
L~

HA(0), HA(1),
..... HA(D)

er of redundant
to generate

K+D

y

ENCODER

—>
LD(0), LD(1),
..., LD(E-1)

PARAMETER
CALCULATOR

E (number of redundant
symbols to generate)

Figure 7

U.S. Patent Jan. 12, 2016 Sheet 7 of 17 US 9,236,887 B2

310
s | 1sa@y | skl 2 | ? 2 | ?
610
HAMMING ENCODER [~
l
\ 4 v A 4 310
s | sy | is-n | vao | o [raD)] 2 | ?
\4
620
LDPC ENCODER —
\ 4 A 4 A\ 4
310
180) | 1s() | o IS(K-1) | HAQ) | ... HAD) | LDO) | ... L[i()E'

Figure 8

U.S. Patent Jan. 12, 2016 Sheet 8 of 17 US 9,236,887 B2

700
,/

705
s
D=1
710 130
NO—» E = R-D-1
YES 720
a \ 4
D = D+1 END

Figure 9

U.S. Patent Jan. 12, 2016 Sheet 9 of 17 US 9,236,887 B2

800

N

805
i=0 ~
810
y
COMPUTE t AS THE
SMALLEST ODD INTEGER
LARGER THAN K/2
815
y

DETERMINE P4, P,, ..., PiBASED
" ONt, K, and S;

\ 4
RE(i) = IS(P4) & ... ® IS(Py)

\

825
7

NO i = i+1

830

i>R-1?

YES

END

Figure 10

U.S. Patent Jan. 12, 2016 Sheet 10 of 17 US 9,236,887 B2

900
N

B(la), B(lv), B(lc), ...

L o, le, ..
l K+R
[
-

DYNAMIC
DECODER

915
A 4 L

1S(0), 7, 1S (2), ... , IS(K-1), RE(0), ? RE(R-1)

%

K+tR ———»
STATIC

DECODER
So, Sy, ... —b>

Figure 11

U.S. Patent

Jan. 12, 2016 Sheet 11 of 17 US 9,236,887 B2

1000

<

1005
o~

RECEIVE Q OUTPUT SYMBOLS

l 1010

REGENERATE INPUT SYMBOLS
AND REDUNDANT SYMBOLS
WITH DYNAMIC DECODER

DONE YES
DECODING?
NO
I 1020
—

REGENERATE INPUT SYMBOLS
WITH STATIC DECODER

Figure 12

U.S. Patent Jan. 12, 2016 Sheet 12 of 17 US 9,236,887 B2

1025

N

RECEIVE Q OUTPUT SYMBOLS

1005
)

Y

REGENERATE INPUT SYMBOLS
AND REDUNDANT SYMBOLS
WITH DYNAMIC DECODER

1010
—

A 4

1015

DONE YES

DECODING?

1035 NO
Py

J 1020
Py
RECEIVE
MORE REGENERATE INPUT SYMBOLS

OUTPUT WITH STATIC DECODER
SYMBOLS

A

1030

NO DONE YES

DECODING?

END

Figure 13

U.S. Patent Jan. 12, 2016 Sheet 13 of 17 US 9,236,887 B2

1050

~

» RECEIVE OUTPUT SYMBOLS

1055
Py

1060
Y py

REGENERATE INPUT SYMBOLS
AND REDUNDANT SYMBOLS
WITH DYNAMIC DECODER

NO STOP

DECODING?

DESIRED YES
ACCURACY
REACHED?
1075
)

REGENERATE INPUT SYMBOLS
WITH STATIC DECODER

END

Figure 14

U.S. Patent Jan. 12, 2016 Sheet 14 of 17 US 9,236,887 B2

1100

/

510 520
\ AP \ 4 y Y
WEIGHT FUNCTION
SELECTOR SELECTOR
4 Y
W(l) 515 1125
assoc. b | FO) IS(';)
q 1 o] ?
v \ 4
I | W) [AL(Y | F@Y | B() 1S(2)
?
I, W(I),AL(l), 1115 ”
B{).F() =—1 IS(AL(}))
A Reducer |« IS(5)
> RE(AL(I))
I, W(1),AL(D), 1S(6)
B().F(1)
1120 1s(AL()=
» Reconstructor B() >
B(), AL(Y), RE(Q(II)(D) IS(K-1)
F(1) for W(1)=1 REQO)
?
RE(2)
1105
—
OUTPUT SYMBOL BUFFER
RECONSTRUCTION
BUFFER

Figure 15

U.S. Patent Jan. 12, 2016 Sheet 15 of 17 US 9,236,887 B2

1200
1215
s
50) So, St....
K, D, E
?
l 1205
1S(2) =
4.
2 LDPC DECODER
? |
IS(5)
1S(6)
K D
l 1210
? =
" HAMMING
RE(0) DECODER
2 o
RE(2)
2
RECONSTRUCTION
BUFFER

Figure 16

U.S. Patent Jan. 12, 2016 Sheet 16 of 17 US 9,236,887 B2

Fig. 17
. Symbol Source Sub-
esizeF G size T G¢*T K, bIchks blocks N K, K 7.A T
I00KB 6 84 504 1,220 1 1 1220 4229 NA N
100 KB 8 64 512 1,600 1 1 1,600 1,600 N/A N/.
J00 KB 2 256 512 1,200 1 2 1,200 1,200 128 12
000 KB 1 512 512 2,000 1 5 2,000 2,000 104 10
000 KB 1 512 512 6,000 1 12 6,000 6,000 44 4(
1,000 KB 1 512 512 20,000 3 14 6,666 6,667 40 3t
Fig. 18
Max source block size B G Symbol size T GT
40 KB 10 48 480
160 KB 4 128 512
40 KB 1 512 512

Fig. 19

U.S. Patent Jan. 12, 2016 Sheet 17 of 17 US 9,236,887 B2

1 2K 3.8 4.H
58 6.GLopc 705 8.2
9.H 10.Grar LI
12K 13.Gyr

Fig. 20
Index j i dli
0 0 -
1 10241 1
2 491582 2
3 712794 3
4 831695 4
5 948446 10
6 1032189 11
7 1048576 40
Fig. 21

Identity matrix

I All zeroes

All zeroes A\

Fig. 22

US 9,236,887 B2

1
FILE DOWNLOAD AND STREAMING
SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 12/197,993, filed Aug. 25, 2008 entitled “FILE
DOWNLOAD AND STREAMING SYSTEM,” which is a
continuation of U.S. patent application Ser. No. 11/125,818,
filed May 9, 2005 entitled “FILE DOWNLOAD AND
STREAMING SYSTEM,” which claims priority to U.S. Pro-
visional Patent Application No. 60/569,127, filed May 7,
2004 entitled “FILE DOWNLOAD AND STREAMING
SYSTEM,” each of which is hereby incorporated by refer-
ence, as if set forth in full in this document, for all purposes.

REFERENCE TO A COMPUTER PROGRAM
LISTING APPENDIX

A listing of tables, formatted as a computer program listing
appendix is submitted on two duplicate compact discs
(“CDs”) and includes Appendices A, B.1 and B.2 as referred
to herein. The computer program listing appendix is hereby
incorporated by reference herein.

FIELD OF THE INVENTION

The present invention relates to encoding and decoding
data in communications systems and more specifically to
communication systems that encode and decode data to
account for errors and gaps in communicated data. In embodi-
ments, data is transmitted over broadcast and/or multicast
wireless networks to receivers.

BACKGROUND OF THE INVENTION

Transmission of files and streams between a sender and a
recipient over a communications channel has been the subject
of'much literature. Preferably, a recipient desires to receive an
exact copy of data transmitted over a channel by a sender with
some level of certainty. Where the channel does not have
perfect fidelity (which covers most all physically realizable
systems), one concern is how to deal with data lost or garbled
in transmission. Lost data (erasures) are often easier to deal
with than corrupted data (errors) because the recipient cannot
always tell when corrupted data is data received in error.
Many error-correcting codes have been developed to correct
for erasures and/or for errors. Typically, the particular code
used is chosen based on some information about the infideli-
ties of the channel through which the data is being transmitted
and the nature of the data being transmitted. For example,
where the channel is known to have long periods of infidelity,
a burst error code might be best suited for that application.
Where only short, infrequent errors are expected a simple
parity code might be best.

Data transmission is straightforward when a transmitter
and a receiver have all of the computing power and electrical
power needed for communications and the channel between
the transmitter and receiver is clean enough to allow for
relatively error-free communications. The problem of data
transmission becomes more difficult when the channel is inan
adverse environment or the transmitter and/or receiver has
limited capability.

One solution is the use of forward error correcting (FEC)
techniques, wherein data is coded at the transmitter such that
a receiver can recover from transmission erasures and errors.

10

15

20

25

30

35

40

45

50

55

60

65

2

Where feasible, a reverse channel from the receiver to the
transmitter allows for the receiver to communicate about
errors to the transmitter, which can then adjust its transmis-
sion process accordingly. Often, however, a reverse channel is
not available or feasible. For example, where the transmitter
is transmitting to a large number of receivers, the transmitter
might not be able to handle reverse channels from all those
receivers. As a result, communication protocols often need to
be designed without a reverse channel and, as such, the trans-
mitter may have to deal with widely varying channel condi-
tions without a full view of those channel conditions.

The problem of data transmission between transmitters and
receivers is made more difficult when the receivers need to be
low-power, small devices that might be portable or mobile
and need to receive data at high bandwidths. For example, a
wireless network might be set up to deliver files or streams
from a stationary transmitter to a large or indeterminate num-
ber of portable or mobile receivers either as a broadcast or
multicast where the receivers are constrained in their com-
puting power, memory size, available electrical power,
antenna size, device size and other design constraints.

In such a system, considerations to be addressed include
having little or no reverse channel, limited memory, limited
computing cycles, mobility and timing. Preferably, the design
should minimize the amount of transmission time needed to
deliver data to potentially a large population of receivers,
where individual receivers and might be turned on and off at
unpredictable times, move in and out of range, incur losses
due to link errors, cell changes, congestion in cells forcing
lower priority file or stream packets to be temporarily
dropped, etc.

In the case of a packet protocol used for data transport, a
file, stream or other block of data to be transmitted over a
packet network is partitioned into equal size input symbols
and input symbols are placed into consecutive packets. The
“size” of an input symbol can be measured in bits, whether or
not the input symbol is actually broken into a bit stream,
where an input symbol has a size of M bits when the input
symbol is selected from an alphabet of 2* symbols. In such a
packet-based communication system, a packet oriented cod-
ing scheme might be suitable. A file transmission is called
reliable if it allows the intended recipient to recover an exact
copy of the original file even in the face of erasures in the
network. A stream transmission is called reliable if it allows
the intended recipient to recover an exact copy of each part of
the stream in a timely manner even in the face of erasures in
the network. Both file transmission and stream transmission
can also be somewhat reliable, in the sense that some parts of
the file or stream are not recoverable or for streaming if some
parts of the stream are not recoverable in a timely fashion.
Packet loss often occurs because sporadic congestion causes
the buffering mechanism in a router to reach its capacity,
forcing it to drop incoming packets. Protection against era-
sures during transport has been the subject of much study.

It is known to use chain reaction codes to allow for gen-
eration of an arbitrary number of output symbols from the
input symbols of a file or stream. This has many uses, includ-
ing the generation of output symbols in an information addi-
tive way, as opposed to an information duplicative way,
wherein the latter is where a receiver receives additional data
that duplicates data the receiver already knows. Novel tech-
niques for generating, using and operating chain reaction
codes are shown, for example, in U.S. Pat. No. 6,307,487
entitled “Information Additive Code Generator and Decoder
for Communication Systems” issued to Luby (“Luby 1), U.S.
Pat. No. 6,320,520 issued to Luby et al. entitled “Information
Additive Group Code Generator and Decoder for Communi-

US 9,236,887 B2

3
cation Systems” (hereinafter “Luby 1I”), and U.S. Pat. No.
7,068,729 issued to Shokrollahi et al. entitled “Multi-Stage
Code Generator and Decoder for Communication Systems”
(hereinafter “Shokrollahi”). To the extent permitted, the
entire disclosures of those are herein incorporated herein by
reference for all purposes.

One property of the output symbols produced by a chain
reaction encoder is that a receiver is able to recover the origi-
nal file or block of the original stream as soon as enough
output symbols have been received. Specifically, to recover
the original K input symbols with a high probability, the
receiver needs approximately K+A output symbols. The ratio
A/K is called the “relative reception overhead.” The relative
reception overhead depends on the number K of input sym-
bols, and on the reliability of the decoder. For example, in one
specific embodiment, and where K is equal to 60,000, a
relative reception overhead of 5% ensures that the decoder
successfully decodes the input file or block of the stream with
a probability of at least 1-107%, and where K is equal to
10,000, a relative reception overhead of 15% ensures the
same success probability of the decoder. In one embodiment,
the relative reception overhead of chain reaction codes can be
computed as (13*sqrt(K)+200)/K, where sqrt(K) is the
square root of the number of input symbols K. In this embodi-
ment the relative reception overhead of chain reaction codes
tends to be larger for small values of K.

Luby I, Luby II and Shokrollahi provide teachings of sys-
tems and methods that can be employed in certain embodi-
ments according to the present invention. It is to be under-
stood, however, that these systems and methods are not
required of the present invention, and many other variations,
modifications, or alternatives can also be used.

It is also known to use multi-stage chain reaction
(“MSCR”) codes, such as those described in Shokrollahi and
developed by Digital Fountain, Inc. under the trade name
“Raptor” codes. Multi-stage chain reaction codes are used,
for example, in an encoder that receives input symbols from a
source file or source stream, generates intermediate symbols
therefrom and encodes the intermediate symbols using chain
reaction codes. More particularly, a plurality of redundant
symbols are generated from an ordered set of input symbols to
be transmitted. A plurality of output symbols are generated
from a combined set of symbols including the input symbols
and the redundant symbols, wherein the number of possible
output symbols is much larger than the number of symbols in
the combined set of symbols, wherein at least one output
symbol is generated from more than one symbol in the com-
bined set of symbols and from less than all of the symbols in
the combined set of symbols, and such that the ordered set of
input symbols can be regenerated to a desired degree of
accuracy from any predetermined number, N, of the output
symbols.

For some applications, other variations of codes might be
more suitable or otherwise preferred.

BRIEF SUMMARY OF THE INVENTION

According to one embodiment of the invention, a method
of'encoding data for transmission from a source to a destina-
tion over a communications channel is provided. The method
operates on an ordered set of input symbols and includes
generating a plurality of redundant symbols from the input
symbols. The method also includes generating a plurality of
output symbols from a combined set of symbols including the
input symbols and the redundant symbols, wherein the num-
ber of possible output symbols is much larger than the number
of symbols in the combined set of symbols, wherein at least

10

15

20

25

30

35

40

45

50

55

60

65

4

one output symbol is generated from more than one symbol in
the combined set of symbols and from less than all of the
symbols in the combined set of symbols, and such that the
ordered set of input symbols can be regenerated to a desired
degree of accuracy from any predetermined number of the
output symbols. The plurality of redundant symbols is gen-
erated from an ordered set of input symbols to be transmitted
in a deterministic process such that a first set of static symbols
calculated using a first input symbol has a low common
membership with a second set of static symbols calculated
using a second input symbol distinct from the first input
symbol.

According to still another embodiment of the invention, a
system for receiving data transmitted from a source over a
communications channel is provided using similar tech-
niques. The system comprises a receive module coupled to a
communications channel for receiving output symbols trans-
mitted over the communications channel, wherein each out-
put symbol is generated from at least one symbol in a com-
bined set of input symbols and redundant symbols, wherein at
least one output symbol is generated from more than one
symbol in the combined set and less than all of the symbols in
the combined set, wherein the number of possible output
symbols is much larger than the number of symbols in the
combined set, wherein the input symbols are from an ordered
set of input symbols, wherein the redundant symbols are
generated from the input symbols and wherein the plurality of
redundant symbols is generated from an ordered set of input
symbols to be transmitted in a deterministic process such that
a first set of static symbols calculated using a first input
symbol has a low common membership with a second set of
static symbols calculated using a second input symbol dis-
tinct from the first input symbol.

According to yet another embodiment of the invention, a
computer data signal embodied in a carrier wave is provided.

Numerous benefits are achieved by way of the present
invention. For example, in a specific embodiment, the com-
putational expense of encoding data for transmission over a
channel is reduced. In another specific embodiment, the com-
putational expense of decoding such data is reduced. Depend-
ing upon the embodiment, one or more of these benefits may
be achieved. These and other benefits are provided in more
detail throughout the present specification and more particu-
larly below.

A further understanding of the nature and the advantages of
the inventions disclosed herein may be realized by reference
to the remaining portions of the specification and the attached
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a communications system
according to one embodiment of the present invention.

FIG. 2 is a block diagram an encoder according to one
embodiment of the present invention.

FIG. 3 is a simplified block diagram of a method of gener-
ating redundant symbols according to one embodiment of the
present invention.

FIG. 4 is a simplified block diagram of the basic operation
of a static encoder according to one embodiment of the
present invention.

FIG. 5 is a simplified block diagram of a dynamic encoder
according to one embodiment of the present invention.

FIG. 6 is a simplified block diagram of a basic operation of
a dynamic encoder according to one embodiment of the
present invention.

US 9,236,887 B2

5

FIG. 7 is a simplified block diagram of a static encoder
according to one embodiment of the present invention.

FIG. 8 is a simplified block diagram of the basic operation
a static encoder according to one embodiment of the present
invention.

FIG. 9 is a simplified diagram of a method for calculating
encoding parameters according to one specific embodiment
of a static encoder.

FIG. 10 is a simplified flow diagram of a static encoder
according to another embodiment of the present invention.

FIG. 11 is a simplified block diagram of a decoder accord-
ing to one embodiment of the present invention.

FIG. 12 is a simplified flow diagram of an operation of a
decoder according to one embodiment of the present inven-
tion.

FIG. 13 is a simplified flow diagram of an operation of a
decoder according to another embodiment of the present
invention.

FIG. 14 is a simplified flow diagram of an operation of a
decoder according to yet another embodiment of the present
invention.

FIG. 15 is a simplified block diagram of a dynamic decoder
according to one embodiment of the present invention.

FIG. 16 is a simplified block diagram of a static decoder
according to one embodiment of the present invention.

FIG. 17 illustrates source symbol from sub-symbol map-
pings.

FIG. 18 illustrates possible settings of file download
parameters for various file sizes.

FIG. 19 illustrates possible settings of streaming param-
eters for various source block sizes.

FIG. 20 illustrates a form of a matrix that represents a
relationship between source and intermediate symbols.

FIG. 21 illustrates a degree distribution for the degree
generator.

FIG. 22 illustrates a form of the matrix A that can be used
for decoding.

A listing of tables, formatted as a computer program listing
appendix is submitted on two duplicate compact discs
(“CDs”) and includes Appendices A, B.1 and B.2 as described
in this paragraph and are hereby incorporated by reference
herein. Appendix A provides an example of a table of Sys-
tematic Indices J(K). For each value of K, the systematic
index J(K) is designed to have the property that the set of
source symbol triples (d[0], a[0], b[O]), .. ., (d[L-1], a[L-1],
b[L-1]) are such thatthe L intermediate symbols are uniquely
defined, i.e., the matrix A in Section B.5.2.4.2 has full rank
and is therefore invertible. Appendix A provides the list of the
systematic indices for values of K between 4 and 8192 inclu-
sive. The order of the values begins with the index for K=4
and ends with index for K=8192. Appendix B.1 provides an
example of table V ,. These values represent an example set of
values for Table V, described in Section B.5.4.1. Each entry is
a 32-bit integer in decimal representation. The order of the
values is from the first line to the last line. Appendix B.2
provides an example of table V,. These values represent an
example set of values for Table V, described in Section
B.5.4.1. Each entry is a 32-bit integer in decimal representa-
tion. The order of the values is from the first line to the last
line.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

In the specific embodiments described herein, a coding
scheme denoted as “multi-stage coding” is described,
embodiments of which are provided in Shokrollahi.

10

15

20

25

30

35

40

45

50

55

60

65

6

Multi-stage encoding, as described herein, encodes the
data in a plurality of stages. Typically, but not always, a first
stage adds a predetermined amount of redundancy to the data.
A second stage then uses a chain reaction code, or the like, to
produce output symbols from the original data and the redun-
dant symbols computed by the first stage of the encoding. In
one specific embodiment of the present invention, the
received data is first decoded using a chain reaction decoding
process. If that process is not successful in recovering the
original data completely, a second decoding step can be
applied.

In embodiments of multi-stage encoding, redundant sym-
bols are generated from the input file or block of the stream
during the first stage of encoding. In these embodiments, in
the second stage of encoding, output symbols are generated
from the combination of the input file or block of the stream
and the redundant symbols. In some of these embodiments,
the output symbols can be generated as needed. In embodi-
ments in which the second stage comprises chain reaction
encoding, each output symbol can be generated without
regard to how other output symbols are generated. Once
generated, these output symbols can then be placed into pack-
ets and transmitted to their destination, with each packet
containing one or more output symbols. Non-packetized
transmission techniques can be used instead or as well.

As used herein, the term “file” refers to any data that is
stored at one or more sources and is to be delivered as a unit
to one or more destinations. Thus, a document, an image, and
a file from a file server or computer storage device, are all
examples of “files” that can be delivered. Files can be of
known size (such as a one megabyte image stored on a hard
disk) or can be of unknown size (such as a file taken from the
output of a streaming source). Either way, the file is a
sequence of input symbols, where each input symbol has a
position in the file and a value.

As used herein, the term “stream” refers to any data that is
stored or generated at one or more sources and is delivered at
a specified rate at each point in time in the order it is generated
to one or more destinations. Streams can be fixed rate or
variable rate. Thus, an MPEG video stream, AMR audio
stream, and a data stream used to control a remote device, are
all examples of “streams” that can be delivered. The rate of
the stream at each point in time can be known (such as 4
megabits per second) or unknown (such as a variable rate
stream where the rate at each point in time is not known in
advance). Either way, the stream is a sequence of input sym-
bols, where each input symbol has a position in the stream and
a value.

Transmission is the process of transmitting data from one
or more senders to one or more recipients through a channel
in order to deliver a file or stream. A sender is also sometimes
referred to as the encoder. If one sender is connected to any
number of recipients by a perfect channel, the received data
can be an exact copy of the input file or stream, as all the data
will be received correctly. Here, we assume that the channel is
not perfect, which is the case for most real-world channels. Of
the many channel imperfections, two imperfections of inter-
est are data erasure and data incompleteness (which can be
treated as a special case of data erasure). Data erasure occurs
when the channel loses or drops data. Data incompleteness
occurs when a recipient does not start receiving data until
some of the data has already passed it by, the recipient stops
receiving data before transmission ends, the recipient chooses
to only receive a portion of the transmitted data, and/or the
recipient intermittently stops and starts again receiving data.
As an example of data incompleteness, a moving satellite
sender might be transmitting data representing an input file or

US 9,236,887 B2

7

stream and start the transmission before a recipient is in
range. Once the recipient is in range, data can be received
until the satellite moves out of range, at which point the
recipient can redirect its satellite dish (during which time it is
not receiving data) to start receiving the data about the same
input file or stream being transmitted by another satellite that
has moved into range. As should be apparent from reading
this description, data incompleteness is a special case of data
erasure, since the recipient can treat the data incompleteness
(and the recipient has the same problems) as if the recipient
was in range the entire time, but the channel lost all the data up
to the point where the recipient started receiving data. Also, as
is well known in communication systems design, detectable
errors can be considered equivalent to erasures by simply
dropping all data blocks or symbols that have detectable
errors.

In some communication systems, a recipient receives data
generated by multiple senders, or by one sender using mul-
tiple connections. For example, to speed up a download, a
recipient might simultaneously connect to more than one
sender to transmit data concerning the same file. As another
example, in a multicast transmission, multiple multicast data
streams might be transmitted to allow recipients to connect to
one or more of these streams to match the aggregate trans-
mission rate with the bandwidth of the channel connecting
them to the sender. In all such cases, a concern is to ensure that
all transmitted data is of independent use to a recipient, i.e.,
that the multiple source data is not redundant among the
streams, even when the transmission rates are vastly different
for the different streams, and when there are arbitrary patterns
of loss.

In general, a communication channel is that which con-
nects the sender and the recipient for data transmission. The
communication channel could be a real-time channel, where
the channel moves data from the sender to the recipient as the
channel gets the data, or the communication channel might be
a storage channel that stores some or all of the data in its
transit from the sender to the recipient. An example of the
latter is disk storage or other storage device. In that example,
a program or device that generates data can be thought of as
the sender, transmitting the data to a storage device. The
recipient is the program or device that reads the data from the
storage device. The mechanisms that the sender uses to get the
data onto the storage device, the storage device itself and the
mechanisms that the recipient uses to get the data from the
storage device collectively form the channel. If there is a
chance that those mechanisms or the storage device can lose
data, then that would be treated as data erasure in the com-
munication channel.

When the sender and recipient are separated by a commu-
nication channel in which symbols can be erased, it is pref-
erable not to transmit an exact copy of an input file or stream,
but instead to transmit data generated from the input file or
stream (which could include all or parts of the input file or
stream itself) that assists with recovery of erasures. An
encoder is a circuit, device, module or code segment that
handles that task. One way of viewing the operation of the
encoder is that the encoder generates output symbols from
input symbols, where a sequence of input symbol values
represent the input file or a block of the stream. Each input
symbol would thus have a position, in the input file or block
of the stream, and a value. A decoder is a circuit, device,
module or code segment that reconstructs the input symbols
from the output symbols received by the recipient. In multi-
stage coding, the encoder and the decoder are further divided
into sub-modules each performing a different task.

10

15

20

25

30

35

40

45

50

55

60

65

8

In embodiments of multi-stage coding systems, the
encoder and the decoder can be further divided into sub-
modules, each performing a different task. For instance, in
some embodiments, the encoder comprises what is referred to
herein as a static encoder and a dynamic encoder. As used
herein, a “static encoder” is an encoder that generates a num-
ber of redundant symbols from a set of input symbols,
wherein the number of redundant symbols is determined prior
to encoding. Examples of static encoding codes include
Reed-Solomon codes, Tornado codes, Hamming codes, Low
Density Parity Check (LDPC) codes, etc. The term “static
decoder” is used herein to refer to a decoder that can decode
data that was encoded by a static encoder.

As used herein, a “dynamic encoder” is an encoder that
generates output symbols from a set of input symbols, where
the number of possible output symbols is orders of magnitude
larger than the number of input symbols, and where the num-
ber of output symbols to be generated need not be fixed. One
example of a dynamic encoder is a chain reaction encoder,
such as the encoders described in Luby I and Luby II. The
term “dynamic decoder” is used herein to refer to a decoder
that can decode data that was encoded by a dynamic encoder.

Embodiments of multi-stage coding need not be limited to
any particular type of input symbol. Typically, the values for
the input symbols are selected from an alphabet of 2* sym-
bols for some positive integer M. In such cases, an input
symbol can be represented by a sequence of M bits of data
from the input file or stream. The value of M is often deter-
mined based on, for example, the uses of the application, the
communication channel, and/or the size of the output sym-
bols. Additionally, the size of an output symbol is often deter-
mined based on the application, the channel, and/or the size of
the input symbols. In some cases, the coding process might be
simplified if the output symbol values and the input symbol
values were the same size (i.e., representable by the same
number of bits or selected from the same alphabet). If that is
the case, then the input symbol value size is limited when the
output symbol value size is limited. For example, it may be
desired to put output symbols in packets of limited size. If
some data about a key associated with the output symbols
were to be transmitted in order to recover the key at the
receiver, the output symbol would preferably be small enough
to accommodate, in one packet, the output symbol value and
the data about the key.

As an example, if an input file is a multiple megabyte file,
the input file might be broken into thousands, tens of thou-
sands, or hundreds of thousands of input symbols with each
input symbol encoding thousands, hundreds, or only few
bytes. As another example, for a packet-based Internet chan-
nel, a packet with a payload of size of 1024 bytes might be
appropriate (a byte is 8 bits). In this example, assuming each
packet contains one output symbol and 8 bytes of auxiliary
information, an output symbol size of 8128 bits ((1024-8)*8)
would be appropriate. Thus, the input symbol size could be
chosen as M=(1024-8)*8, or 8128 bits. As another example,
some satellite systems use the MPEG packet standard, where
the payload of each packet comprises 188 bytes. In that
example, assuming each packet contains one output symbol
and 4 bytes of auxiliary information, an output symbol size of
1472 bits ((188-4)*8), would be appropriate. Thus, the input
symbol size could be chosen as M=(188-4)*8, or 1472 bits.
In a general-purpose communication system using multi-
stage coding, the application-specific parameters, such as the
input symbol size (i.e., M, the number of bits encoded by an
input symbol), might be variables set by the application.

As another example, for a stream that is sent using variable
size source packets, the symbol size might be chosen to be

US 9,236,887 B2

9

rather small so that each source packet can be covered with an
integral number of input symbols that have aggregate size at
most slightly larger than the source packet.

Each output symbol has a value. In one preferred embodi-
ment, which we consider below, each output symbol also has
associated therewith an identifier called its “key.” Preferably,
the key of each output symbol can be easily determined by the
recipient to allow the recipient to distinguish one output sym-
bol from other output symbols. Preferably, the key of an
output symbol is distinct from the keys of all other output
symbols. There are various forms of keying discussed in
previous art. For example, Luby I describes various forms of
keying that can be employed in embodiments of the present
invention.

Multi-stage coding is particularly useful where there is an
expectation of data erasure or where the recipient does not
begin and end reception exactly when a transmission begins
and ends. The latter condition is referred to herein as “data
incompleteness.” Regarding erasure events, multi-stage cod-
ing shares many of the benefits of chain reaction coding
described in Luby I. In particular, multi-stage output symbols
are information additive, so any suitable number of packets
can be used to recover an input file or stream to a desired
degree of accuracy. These conditions do not adversely affect
the communication process when multi-stage coding is used,
because the output symbols generated with multi-stage cod-
ing are information additive. For example, if a hundred pack-
ets are lost due to a burst of noise causing data erasure, an
extra hundred packets can be picked up after the burst to
replace the loss of the erased packets. If thousands of packets
are lost because a receiver did not tune into a transmitter when
it began transmitting, the receiver could just pickup those
thousands of packets from any other period of transmission,
or even from another transmitter. With multi-stage coding, a
receiver is not constrained to pickup any particular set of
packets, so it can receive some packets from one transmitter,
switch to another transmitter, lose some packets, miss the
beginning or end of a given transmission and still recover an
input file or block of a stream. The ability to join and leave a
transmission without receiver-transmitter coordination helps
to simplify the communication process.

In some embodiments, transmitting a file or stream using
multi-stage coding can include generating, forming or
extracting input symbols from an input file or block of a
stream, computing redundant symbols, encoding input and
redundant symbols into one or more output symbols, where
each output symbol is generated based on its key indepen-
dently of all other output symbols, and transmitting the output
symbols to one or more recipients over a channel. Addition-
ally, in some embodiments, receiving (and reconstructing) a
copy of the input file or block of a stream using multi-stage
coding can include receiving some set or subset of output
symbols from one of more data streams, and decoding the
input symbols from the values and keys of the received output
symbols.

Suitable FEC erasure codes as described herein can be used
to overcome the above-cited difficulties and would find use in
a number of fields including multimedia broadcasting and
multicasting systems and services. An FEC erasure code
hereafter referred to as “a multi-stage chain reaction code”
has properties that meet many of the current and future
requirements of such systems and services.

Some basic properties of multi-stage chain reaction codes
are that, for any packet loss conditions and for delivery of
source files of any relevant size or streams of any relevant
rate: (a) reception overhead of each individual receiver device
(“RD”) is minimized; (b) the total transmission time needed

10

15

20

25

30

35

40

45

50

55

60

65

10

to deliver source files to any number of RDs can be minimized
(c) the quality of the delivered stream to any number of RDs
can be maximized for the number of output symbols sent
relative to the number of input symbols, with suitable selec-
tion of transmission schedules. The RDs might be handheld
devices, embedded into a vehicle, portable (i.e., movable but
not typically in motion when in use) or fixed to a location.

The amount of working memory needed for decoding is
low and can still provide the above properties, and the amount
of computation needed to encode and decode is minimal. In
this document, we provide a simple and easy to implement
description of some variations of multi-stage chain reaction
codes.

Multi-stage chain reaction codes are fountain codes, i.e., as
many encoding packets as needed can be generated on-the-
fly, each containing unique encoding symbols that are equally
useful for recovering a source file or block of a stream. There
are many advantages to using fountain codes versus other
types of FEC codes. One advantage is that, regardless of
packet loss conditions and RD availability, fountain codes
minimize the number of encoding packets each RD needs to
receive to reconstruct a source file or block of a stream. This
is true even under harsh packet loss conditions and when, for
example, mobile RDs are only intermittently turned-on or
available over a long file download session.

Another advantage is the ability to generate exactly as
many encoding packets as needed, making the decision on
how many encoding packets to generate on-the-fly while the
transmission is in progress. This can be useful if for example
there is feedback from RDs indicating whether or not they
received enough encoding packets to recover a source file or
block of a stream. When packet loss conditions are less severe
than expected the transmission can be terminated early. When
packet loss conditions are more severe than expected or RDs
are unavailable more often than expected the transmission
can be seamlessly extended.

Another advantage is the ability to inverse multiplex.
Inverse multiplexing is when a RD is able to combine
received encoding packets generated at independent senders
to reconstruct a source file or block of a stream. One practical
use of inverse multiplexing is described in below in reference
to receiving encoding packets from different senders.

Where future packet loss, RD availability and application
conditions are hard to predict, it is important to choose an
FEC solution that is as flexible as possible to work well under
unpredictable conditions. multi-stage chain reaction codes
provide a degree of flexibility unmatched by other types of
FEC codes.

Aspects of the invention will now be described with refer-
ence to the figures.

System Overview

FIG.1is ablock diagram of a communications system 100
that uses multi-stage coding. In communications system 100,
an input file 101, or an input stream 105, is provided to an
input symbol generator 110. Input symbol generator 110
generates a sequence of one or more input symbols (IS(0),
1S(1),1S(2), . . .) from the input file or stream, with each input
symbol having a value and a position (denoted in FIG.1as a
parenthesized integer). As explained above, the possible val-
ues for input symbols, i.e., its alphabet, is typically an alpha-
bet of 2™ symbols, so that each input symbol codes for M bits
of'the input file or stream. The value of M is generally deter-
mined by the use of communication system 100, but a general
purpose system might include a symbol size input for input
symbol generator 110 so that M can be varied from use to use.
The output of input symbol generator 110 is provided to an
encoder 115.

US 9,236,887 B2

11

Static key generator 130 produces a stream of static keys
Sq: S;, The number of the static keys generated is
generally limited and depends on the specific embodiment of
encoder 115. The generation of static keys will be subse-
quently described in more detail. Dynamic key generator 120
generates a dynamic key for each output symbol to be gener-
ated by the encoder 115. Each dynamic key is generated so
that a large fraction of the dynamic keys for the same input file
orblock of a stream are unique. For example, Luby I describes
embodiments of key generators that can be used. The outputs
of'dynamic key generator 120 and the static key generator 130
are provided to encoder 115.

From each key I provided by dynamic key generator 120,
encoder 115 generates an output symbol, with a value B(I),
from the input symbols provided by the input symbol genera-
tor. The operation of encoder 115 will be described in more
detail below. The value of each output symbol is generated
based on its key, on some function of one or more of the input
symbols, and possibly on or more redundant symbols thathad
been computed from the input symbols. The collection of
input symbols and redundant symbols that give rise to a
specific output symbol is referred to herein as the output
symbol’s “associated symbols™ or just its “associates”. The
selection of the function (the “value function™) and the asso-
ciates is done according to a process described in more detail
below. Typically, but not always, M is the same for input
symbols and output symbols, i.e., they both code for the same
number of bits.

In some embodiments, the number K of input symbols is
used by the encoder 115 to select the associates. If K is not
known in advance, such as where the input is a streaming file,
K can be just an estimate. The value K might also be used by
encoder 115 to allocate storage for input symbols and any
intermediate symbols generated by encoder 115.

Encoder 115 provides output symbols to a transmit module
140. Transmit module 140 is also provided the key of each
such output symbol from the dynamic key generator 120.
Transmit module 140 transmits the output symbols, and
depending on the keying method used, transmit module 140
might also transmit some data about the keys of the transmit-
ted output symbols, over a channel 145 to a receive module
150. Channel 145 is assumed to be an erasure channel, but
that is not a requirement for proper operation of communica-
tion system 100. Modules 140, 145 and 150 can be any
suitable hardware components, software components, physi-
cal media, or any combination thereof, so long as transmit
module 140 is adapted to transmit output symbols and any
needed data about their keys to channel 145 and receive
module 150 is adapted to receive symbols and potentially
some data about their keys from channel 145. The value of K,
if used to determine the associates, can be sent over channel
145, or it may be set ahead of time by agreement of encoder
115 and decoder 155.

As explained above, channel 145 can be a real-time chan-
nel, such as a path through the Internet or a broadcast link
from a television transmitter to a television recipient or a
telephone connection from one point to another, or channel
145 can be a storage channel, such as a CD-ROM, disk drive,
Web site, or the like. Channel 145 might even be a combina-
tion of a real-time channel and a storage channel, such as a
channel formed when one person transmits an input file from
a personal computer to an Internet Service Provider (ISP)
over a telephone line, the input file is stored on a Web server
and is subsequently transmitted to a recipient over the Inter-
net.

Because channel 145 is assumed to be an erasure channel,
communications system 100 does not assume a one-to-one

40

45

65

12

correspondence between the output symbols that exit receive
module 150 and the output symbols that go into transmit
module 140. In fact, where channel 145 comprises a packet
network, communications system 100 might not even be able
to assume that the relative order of any two or more packets is
preserved in transit through channel 145. Therefore, the key
of'the output symbols is determined using one or more of the
keying schemes described above, and not necessarily deter-
mined by the order in which the output symbols exit receive
module 150.

Receive module 150 provides the output symbols to a
decoder 155, and any data receive module 150 receives about
the keys of these output symbols is provided to a dynamic key
regenerator 160. Dynamic key regenerator 160 regenerates
the dynamic keys for the received output symbols and pro-
vides these dynamic keys to decoder 155. Static key generator
163 regenerates the static keys S, S,, . . . and provides them
to decoder 155. The static key generator has access to random
number generator 135 used both during the encoding and the
decoding process. This can be in the form of access to the
same physical device if the random numbers are generated on
such device, or in the form of access to the same algorithm for
the generation of random numbers to achieve identical behav-
ior. Decoder 155 uses the keys provided by dynamic key
regenerator 160 and static key generator 163 together with the
corresponding output symbols, to recover the input symbols
(again 1S(0), IS(1), IS(2), . . .). Decoder 155 provides the
recovered input symbols to an input file reassembler 165,
which generates a copy 170 of input file 101 or input stream
105.

An Encoder

FIG. 2 is a block diagram of one specific embodiment of
encoder 115 shown in FIG. 1. Encoder 115 comprises a static
encoder 210, a dynamic encoder 220, and a redundancy cal-
culator 230. Static encoder 210 receives the following inputs:
a) original input symbols IS(0), IS(1), . . ., IS(K-1) provided
by the input symbol generator 110 and stored in an input
symbol buffer 205; b) the number K of original input sym-
bols; c) static keys S, S;, . . . provided by the static key
generator 130; and d) a number R of redundant symbols.
Upon receiving these inputs static encoder 205 computes R
redundant symbols RE(0), RE(1), . . ., RE(R-1) as will be
described below. Typically, but not always, the redundant
symbols have the same size as the input symbols. In one
specific embodiment, the redundant symbols generated by
static encoder 210 are stored in input symbol buffer 205. Input
symbol buffer 205 may be only logical, i.e., the file or block
of the stream may be physically stored in one place and the
positions of the input symbols within symbol buffer 205
could only be renamings of the positions of these symbols
within the original file or block of the stream.

Dynamic encoder receives the input symbols and the
redundant symbols, and generates output symbols as will be
described in further detail below. In one embodiment in which
the redundant symbols are stored in the input symbol buffer
205, dynamic encoder 220 receives the input symbols and
redundant symbols from input symbol buffer 205.

Redundancy calculator 230 computes the number R of
redundant symbols from the number K of input symbols. This
computation is described in further detail below.

Overview of Static Encoder

The general operation of static encoder 210 is shown with
reference to FIGS. 3 and 4. FIG. 3 is a simplified flow diagram
illustrating one embodiment of a method of statically encod-
ing. In a step 305, a variable j, which keeps track of how many
redundant symbols have been generated, is set to zero. Then,
in a step 310, a first redundant symbol RE(0) is computed as

US 9,236,887 B2

13
a function F, of at least some of the input symbols
1S(0), . . ., IS(K-1). Then, in a step 315, the variable j is

incremented. Next, in a step 320, it is tested whether all of the
redundant symbols have been generated (i.e., is j greater than
R-1?). If yes, then the flow ends. Otherwise, the flow pro-
ceedsto step 325. In step 325, RE(j) is computed as a function
F, of the input symbols IS(0), . . ., IS(K-1) and of the
previously generated redundant symbols RE(0), ..., RE(j-1),
where need not be a function that depends on every one of the
input symbols or every one of the redundant symbols. Steps
315, 320, and 325 are repeated until R redundant symbols
have been computed.

Referring again to FIGS. 1 and 2, in some embodiments,
static encoder 210 receives one or more static keys S,
S,, . .. from static key generator 130. In these embodiments,
the static encoder 210 uses the static keys to determine some
or all of functions Fy, F,, . .. F, ;. For example, static key S,
can beused to determine function F, statickey S, canbe used
to determine function F |, etc. Or, one or more of static keys
So, Sy, . . . can be used to determine function F,, one or more
of statickeys S, S,, . .. can be used to determine function F,,
etc. In other embodiments, no static keys are needed, and thus
static key generator 130 is not needed.

Referring now to FIGS. 2 and 3, in some embodiments, the
redundant symbols generated by static encoder 210 can be
stored in input symbol buffer 205. FIG. 4 is a simplified
illustration of the operation of one embodiment of static
encoder 210. Particularly, static encoder 210 generates redun-
dant symbol RE(j) as a function Fj of input symbols
18(0), ..., IS(K-1), RE(0), . .., RE(j-1), received from input
symbol butfer 205, and stores it back into input symbol buffer
205. The exact form of the functions F,, F,, .. ., F,_, depends
on the particular application. Typically, but not always, func-
tions Fy, F,, ..., Fx | include an exclusive OR of some or all
of their corresponding arguments. As described above, these
functions may or may not actually employ static keys gener-
ated by static key generator 130 of FIG. 1. For example, in one
specific embodiment described below, the first few functions
implement a Hamming code and do not make any use of the
static keys S, S, . . ., whereas the remaining functions
implement a Low-Density Parity-Check code and make
explicit use of the static keys.

Overview of Multi-Stage Encoder

Referring again to FIG. 2, dynamic encoder 220 receives
input symbols IS(0), . . ., IS(K-1) and the redundant symbols
RE(0), . ..,RE(R-1) and a key I for each output symbol it is
to generate. The collection comprising the original input sym-
bols and the redundant symbols will be referred to as the
collection of “dynamic input symbols™ hereafter. FIG. 5 is a
simplified block diagram of one embodiment of a dynamic
encoder, including a weight selector 510, an associator 515, a
value function selector 520 and a calculator 525. As shown in
FIG. 5, the K+R dynamic input symbols are stored in a
dynamic symbol bufter 505. In effect, dynamic encoder 500
performs the action illustrated in FIG. 6, namely, to generate
an output symbol value B(I) as some value function of
selected input symbols.

FIG. 7 is a simplified block diagram of one specific
embodiment of a static encoder according to the present
invention. Static encoder 600 comprises a parameter calcula-
tor 605, a Hamming encoder 610, and a low-density-parity-
check (LDPC) encoder 620. Hamming encoder 610 is
coupled to receive the input symbols IS(0), . .., IS(K-1) from
an input symbol buffer 625, the number K of input symbols,
and the parameter D. In response, Hamming encoder 610
generates D+1 redundant symbols HA(0), HA(1), ..., HA(D)
according to a Hamming code.

10

15

20

25

30

35

40

45

50

55

60

65

14

FIG. 8 illustrates the operation of one embodiment of the
present invention that employs the static encoder shown in
FIG. 7.

FIG. 9is asimplified flow diagram illustrating one embodi-
ment of a parameter calculator, such as parameter calculator
605 of FIG. 7, that calculates parameter D and E as described
above. First, in a step 705, parameter D is initialized to one.
Then, in step 710, it is determined whether 2°-D-1 is less
than K. If no, then the flow proceeds to step 730. If yes, the
flow proceeds to step 720, where the parameter D is incre-
mented. Then, the flow proceeds back to step 710. Once D has
been determined, then, in step 730, the parameter E is calcu-
lated as R-D-1.

FIG. 10 is a simplified flow diagram of such an encoder
according to one embodiment of the present invention, which
will now be described. First, in step 805, a variable i is
initialized to zero. Variable i keeps track of the number of
redundant symbols already generated. In step 810, a number
tis calculated as the smallest odd integer greater than or equal
to K/2. In step 815, values P,, P,, . . ., P, are generated based
onK, t, and a static key S,. The values P,, P,, . . ., P, indicate
the positions of input symbols that will be used to generate a
redundant symbol. In one particular embodiment, an associa-
tor such as associator 515 of FIG. 5 is used to generate P,
P,, ..., P, Inparticular, the value t can be provided as the W(I)
input, the value K can be provided as the K+R input, and the
static key S, can be provided as the key I input. It should be
noted that many different values oft would yield similar cod-
ing effects, and thus this particular choice is only an example.
In step 820, the value of RE(i) is computed as the XOR ofthe
values IS(P,), IS(P,), . . ., IS(P,). In step 825, the variableiis
incremented by one to prepare computation of the next redun-
dant symbol, and in step 830, it is determined whether all the
redundant symbols have been computed. If not, then the flow
returns to step 815.

FIG. 11 is a simplified block diagram illustrating one
embodiment of a decoder according to the present invention.
Decoder 900 can be used, for example, to implement decoder
155 of FIG. 1.

Decoder 900 comprises a dynamic decoder 905 and a static
decoder 910. Input symbols and redundant symbols recov-
ered by dynamic decoder 905 are stored in a reconstruction
buffer 915. Upon completion of dynamic decoding, static
decoder 910 attempts to recover any input symbols not recov-
ered by dynamic decoder 905, if any. In particular, static
decoder 910 receives input symbols and redundant symbols
from reconstruction buffer 915.

FIG. 12 is a simplified flow diagram illustrating one
embodiment of a method for decoding according to the
present invention. In step 1005, Q output symbols are
received by the decoder. The value of Q can depend on the
number of input symbols and the specific dynamic encoder
used. The value of Q can also depend on the desired degree of
accuracy to which the decoder can recover the input symbols.
For example, ifitis desired that the decoder can recover all of
the input symbols with a high probability, then Q should be
chosen to be larger than the number of input symbols. Par-
ticularly, in some applications, when the number of input
symbols is large, Q can be less than 3% larger than the number
of original input symbols. In other applications, when the
number of input symbols is small, Q can be at least 10% larger
than the number of input symbols. Specifically, Q can be
chosen as the number K of input symbols plus a number A,
where A is chosen to ensure that the decoder can regenerate
all of the input symbols with a high probability. Determina-
tion of the number A is described in more detail below. Ifit is
acceptable for the decoder to be unable to decode all of the

US 9,236,887 B2

15

input symbols (either sometimes or always), then Q can be
less than K+A, equal to K, or even less than K. Clearly, one
aim of an overall coding system will often be to decrease the
number Q as much as possible, while maintaining good
probabilistic guarantees on the success of the decoding pro-
cess with respect to the desired degree of accuracy.

In step 1010, dynamic decoder 905 regenerates input sym-
bols and redundant symbols from the Q received output sym-
bols. It is to be understood, that steps 1005 and 1010 can be
performed substantially concurrently. For example, dynamic
decoder 905 can begin regenerating input symbols and redun-
dant symbols prior to the decoder receiving Q output sym-
bols.

After dynamic decoder 905 has processed Q output sym-
bols, then it is determined whether the input symbols have
been recovered to a desired degree of accuracy. The desired
degree of accuracy may be, for example, all of the input
symbols, or some number, percentage, etc., less than all of the
input symbols. If yes, then the flow ends. If no, then the flow
proceeds to step 1020. In step 1020, static decoder 910
attempts to recover any input symbols that dynamic decoder
905 was unable to recover. After static encoder 910 has pro-
cessed the input symbols and redundant symbols recovered
by dynamic encoder 905, then the flow ends.

FIG. 13 is a simplified flow diagram illustrating another
embodiment of a method for decoding according to the
present invention. This embodiment is similar to that
described with respect to FIG. 11, and includes steps 1005,
1010, 1015, and 1025 in common. But, after step 1025, the
flow proceeds to step 1030, in which it is determined whether
the input symbols have been recovered to a desired degree of
accuracy. If yes, then the flow ends. If no, then the flow
proceeds to step 1035. In step 1035, one or more additional
output symbols are received. Then, the flow proceeds back to
step 1010, so that dynamic decoder 905 and/or static decoder
910 can attempt to recover the remaining unrecovered input
symbols.

FIG. 14 is a simplified flow diagram illustrating yet another
embodiment of a method for decoding according to the
present invention. In step 1055, output symbols are received
by the decoder, and in step 1060, dynamic decoder 905 regen-
erates input symbols and redundant symbols from the
received output symbols. Then, in step 1065, it is determined
whether dynamic decoding should be ended. This determina-
tion can be based on one or more of the number of output
symbols processed, the number of input symbols recovered,
the current rate at which additional input symbols are being
recovered, the time spent processing output symbols, etc.

In step 1065, if it is determined that dynamic decoding is
not to be stopped, then the flow proceeds back to step 1055.
But, ifinstep 1065, it is determined to end dynamic decoding,
then the flow proceeds to step 1070. In step 1070, it is deter-
mined whether the input symbols have been recovered to a
desired degree of accuracy. If yes, then the flow ends. If no,
then the flow proceeds to step 1075. In step 1075, static
decoder 910 attempts to recover any input symbols that
dynamic decoder 905 was unable to recover. After static
encoder 910 has processed the input symbols and redundant
symbols recovered by dynamic encoder 905, the flow ends.

FIG. 15 shows one embodiment of dynamic decoder
according to the present invention. Dynamic decoder 1100
includes similar components as those of dynamic encoder
500 shownin FIG. 5. Decoder 1100 is similar to embodiments
of chain reaction decoders described in Luby I and Luby II.
Dynamic decoder 1100 comprises a weight selector 510, an

10

15

20

25

30

35

40

45

50

55

60

65

16
associator 515, a value function selector 520, an output sym-
bol buffer 1105, a reducer 1115, a reconstructor 1120 and a
reconstruction buffer 1125.

FIG. 16 is a simplified block diagram illustrating one
embodiment of a static decoder. This embodiment can be
used when the data is encoded with a static encoder such as
described with reference to FIG. 7. Static decoder 1200 com-
prises a LDPC decoder 1205 and a Hamming decoder 1210.
The LDPC decoder 1205 receives input symbols and redun-
dant symbols from a reconstruction buffer 1215, and attempts
to reconstruct those symbols of reconstruction buffer 1215
unrecovered after the decoding step of the dynamic decoder.
In some embodiments, reconstruction buffer 1215 is recon-
struction buffer 1125 (FIG. 15).

Many variations of LDPC decoders and Hamming decod-
ers are well known to those skilled in the art, and can be
employed in various embodiments according to the present
invention. In one specific embodiment, Hamming decoder is
implemented using a Gaussian elimination algorithm. Many
variations of Gaussian elimination algorithms are well known
to those skilled in the art, and can be employed in various
embodiments according to the present invention.

Variations

Multi-stage chain reaction codes as described above are not
systematic codes, i.e., all of the original source symbols of a
source block are not necessarily among the encoding symbols
that are sent. However, systematic FEC codes are useful for a
file download system or service, and very important for a
streaming system or service. As shown in the implementation
below, a modified code can be made to be systematic and still
maintain the fountain code and other described properties.

One reason why it is easy to architect a variety of supple-
mental services using multi-stage codes is that it can combine
received encoding symbols from multiple senders to recon-
struct a source file or stream without coordination among the
senders. The only requirement is that the senders use differing
sets of keys to generate the encoding symbols that they send
in encoding packets to the code. Ways to achieve this include
designating different ranges of the key space to be used by
each such sender, or generating keys randomly at each sender.

As an example of the use of this capability, consider pro-
viding a supplemental service to a file download service that
allows multi-stage chain reaction codes that did not receive
enough encoding packets to reconstruct a source file from the
file download session to request additional encoding packets
to be sent from a make-up sender, e.g., via a HTTP session.
The make-up sender generates encoding symbols from the
source file and sends them, for example using HTTP, and all
these encoding symbols can be combined with those received
from the file download session to recover the source file.
Using this approach allows different senders to provide incre-
mental source file delivery services without coordination
between the senders, and ensuring that each individual
receiver need receive only a minimal number of encoding
packets to recover each source file.

Implementations of Various Stages of Multi-Stage Codes

FEC Scheme Definition

A packet using these techniques might be represented with
header information such as an FEC Payload ID of four octets
comprising a Source Block Number (SBN) (16 bit integer
identifier for the source block that the encoding symbols
within the packet relate to) and an Encoding Symbol ID (ESI)
(16 bit integer identifier for the encoding symbols within the
packet). One suitable interpretation of the Source Block
Number and Encoding Symbol Identifier is defined in Sec-
tions B below. FEC Object Transmission information might
comprise the FEC Encoding ID, a Transfer Length (F) and the

US 9,236,887 B2

17

parameters T, Z, N and A defined in below. The parameters T
and Z are 16 bit unsigned integers, N and A are 8 bit unsigned
integers.

An FEC encoding scheme for MBMS forward error cor-
rection is defined in the sections below. It defines two differ-
ent FEC Payload ID formats, one for FEC source packets and
another for FEC repair packets, but variations for nonsystem-
atic codes are also possible.

The Source FEC payload ID might comprise a Source
Block Number (SBN) (16 bit integer identifier for the source
block that the encoding symbols within the packet relate to)
and an Encoding Symbol ID (ESI) (16 bit integer identifier for
the encoding symbols within the packet), while the Repair
FEC Payload ID might comprise a Source Block Number
(SBN) (16 bit integer identifier for the source block that the
repair symbols within the packet relate to), an Encoding Sym-
bol ID (ESI) (16 bit integer identifier for the repair symbols
within the packet), and a Source Block Length (SBL) (16 bits,
representing the number of source symbols in the source
block. The interpretation of the Source Block Number,
Encoding Symbol Identifier and Source Block Length is
defined below.

FEC Object Transmission information might comprise the
FEC Encoding ID, the maximum source block length, in
symbols, and the symbol size, in bytes. The symbol size and
maximum source block length might comprise a four octet
field of Symbol Size (T) (16 bits representing the size of an
encoding symbol, in bytes), and a Maximum Source Block
Length (16 bits representing the maximum length of a source
block, in symbols).

The sections below specify the systematic MSCR forward
error correction code and its application to MBMS and other
uses. MSCR is a fountain code, i.e., as many encoding sym-
bols as needed can be generated by the encoder on-the-fly
from the source symbols of a block. The decoder is able to
recover the source block from any set of encoding symbols
only slightly more in number than the number of source
symbols. The code described in this document is a systematic
code, that is, the original source symbols are sent unmodified
from sender to receiver, as well as a number of repair symbols.
B.1 Definitions, Symbols and Abbreviations

B.1.1 Definitions

For the purposes of this description, the following terms
and definitions apply.

Source block: a block of K source symbols which are consid-
ered together for MSCR encoding purposes.

10

15

20

25

30

35

40

45

18

Source symbol: the smallest unit of data used during the
encoding process. All source symbols within a source block
have the same size.

Encoding symbol: a symbol that is included in a data packet.
The encoding symbols comprise the source symbols and the
repair symbols. Repair symbols generated from a source
block have the same size as the source symbols of that source
block.

Systematic code: a code in which the source symbols are
included as part of the encoding symbols sent for a source
block.

Repair symbol: the encoding symbols sent for a source block
that are not the source symbols. The repair symbols are gen-
erated based on the source symbols.

Intermediate symbols: symbols generated from the source
symbols using an inverse encoding process. The repair sym-
bols are then generated directly from the intermediate sym-
bols. The encoding symbols do not include the intermediate
symbols, i.e., intermediate symbols are not included in data
packets.

Symbol: a unit of data. The size, in bytes, of a symbol is
known as the symbol size.

Encoding symbol group: a group of encoding symbols that
are sent together, i.e., within the same packet whose relation-
ship to the source symbols can be derived from a single
Encoding Symbol ID.

Encoding Symbol ID: information that defines the relation-
ship between the symbols of an encoding symbol group and
the source symbols.

Encoding packet: data packets that contain encoding symbols

Sub-block: a source block is sometime broken into sub-
blocks, each of which is sufficiently small to be decoded in
working memory. For a source block comprising K source
symbols, each sub-block comprises K sub-symbols, each
symbol of the source block being composed of one sub-
symbol from each sub-block.

Sub-symbol: part of a symbol. Each source symbol is com-
posed of as many sub-symbols as there are sub-blocks in the
source block.

Source packet: data packets that contain source symbols.
Repair packet: data packets that contain repair symbols.
B.1.2. Symbols

i,j,x b,a,b,d,v,m

represent positive integers

ceil(x) denotes the smallest positive integer which is greater than or equal to x

choose(i, j) denotes the number of ways j objects can be chosen from among i objects
without repetition

floor(x) denotes the largest positive integer which is less than or equal to x

1% denotes i modulo j

X'y denotes, for equal-length bit strings X and Y, the bitwise exclusive-or of X and Y

A denote a symbol alignment parameter. Symbol and sub-symbol sizes are
restricted to be multiples of A.

AT denotes the transposed matrix of matrix A

Al denotes the inverse matrix of matrix A

K denotes the number of symbols in a single source block

Karax denotes the maximum number of source symbols that can be in a single source
block. Set to 8192.

L denotes the number of pre-coding symbols for a single source block

S denotes the number of LDPC symbols for a single source block

H denotes the number of Half symbols for a single source block

C denotes an array of intermediate symbols, C[0], C[1], C[2],...,C[L - 1]

C denotes an array of source symbols, C'[0], C'[1], C'[2],...,C'[K-1]

X a non-negative integer value

Vo, Vi two arrays of 4-byte integers, Vo[0], Vo[1], . . ., Vo[255] and V[0], V[1], .. .,

V,[255]

Rand[X, i, m]

a pseudo-random number generator

US 9,236,887 B2

19 20
-continued

Deg[v] a degree generator

LTEnc[K, C, (d, a, a LT encoding symbol generator

b)]

Trip[K, X] a triple generator function

G the number of symbols within an encoding symbol group

N the number of sub-blocks within a source block

T the symbol size in bytes. If the source block is partitioned into sub-blocks,
then T=T"-N.

T the sub-symbol size, in bytes. If the source block is not partitioned into sub-
blocks then T' is not relevant.

F the file size, for file download, in bytes

I the sub-block size in bytes

P for file download, the payload size of each packet, in bytes, that is used in the
recommended derivation of the file download transport parameters. For
streaming, the payload size of each repair packet, in bytes, that is used in the
recommended derivation of the streaming transport parameters.

Q Q= 65521, i.e., Q is the largest prime smaller than 2'¢

Z the number of source blocks, for file download

I(K) the systematic index associated with K

G denotes any generator matrix

Is denotes the SxS identity matrix

Osoir denotes the SxH zero matrix

B.1.3 Abbreviations
For the purposes of the present document, the following
abbreviations apply:

ESI Encoding Symbol ID

LDPC Low Density Parity Check

LT Luby Transform

SBN Source Block Number

SBL Source Block Length (in units of symbols)

B.2. Overview

The MSCR forward error correction code can be applied to
both MBMS file delivery and MBMS streaming applications.
MSCR code aspects which are specific to each of these appli-
cations are discussed in Sections B.3 and B.4 of this docu-
ment.

A component of the systematic MSCR code is the basic
encoder described in Section B.5. First, itis described how to
derive values for a set of intermediate symbols from the
original source symbols such that knowledge of the interme-
diate symbols is sufficient to reconstruct the source symbols.
Secondly, the encoder produces repair symbols which are
each the exclusive OR of a number of the intermediate sym-
bols. The encoding symbols are the combination of the source
and repair symbols. The repair symbols are produced in such
a way that the intermediate symbols and therefore also the
source symbols can be recovered from any sufficiently large
set of encoding symbols.

This document defines the systematic MSCR code
encoder. A number of possible decoding algorithms are pos-
sible. An efficient decoding algorithm is provided in Section
B.6.

The construction of the intermediate and repair symbols is
based in part on a pseudo-random number generator
described in Section B.5. This generator is based on a fixed set
of 512 random numbers that are available to both sender and
receiver. An example set of numbers are those provided in
Appendix B.1.

Finally, the construction of the intermediate symbols from
the source symbols is governed by a ““systematic index”. An
example set of values for the systematic index is shown in
Appendix A for source block sizes from 4 source symbols to
K,.4x=8192 source symbols.

25

30

35

40

45

50

55

60

B.3. File Download

B.3.1. Source Block Construction

B.3.1.1. General

In order to apply the MSCR encoder to a source file, the file
may be broken into Z=1 blocks, known as source blocks. The
MSCR encoder is applied independently to each source
block. Each source block is identified by a unique integer
Source Block Number (SBN), where the first source block
has SBN zero, the second has SBN one, etc. Each source
block is divided into a number, K, of source symbols of size
T bytes each. Each source symbol is identified by a unique
integer Encoding Symbol Identifier (ESI), where the first
source symbol of a source block has ESI zero, the second has
ESI one, etc.

Each source block with K source symbols is divided into
N=z1 sub-blocks, which are small enough to be decoded in the
working memory. Each sub-block is divided into K sub-
symbols of size T".

Note that the value of K is not necessarily the same for each
source block of a file and the value of T' may not necessarily
be the same for each sub-block of a source block. However,
the symbol size T is the same for all source blocks of a file and
the number of symbols, K is the same for every sub-block of
a source block. Exact partitioning of the file into source
blocks and sub-blocks is described in B.3.1.2 below.

FIG. 17 shows an example source block placed into a two
dimensional array, where each entry is a T'-byte sub-symbol,
each row is a sub-block and each column is a source symbol.
In this example, the value of T' is the same for every sub-
block. The number shown in each sub-symbol entry indicates
their original order within the source block. For example, the
sub-symbol numbered K contains bytes T'. K through T'-(K+
1)-1 of the source block. Then, source symbol i is the con-
catenation of the ith sub-symbol from each of the sub-blocks,
which corresponds to the sub-symbols of the source block
numbered i, K+i, 2:K+i, . . ., (N=1)K+.

B.3.1.2 Source Block and Sub-Block Partitioning

The construction of source blocks and sub-blocks is deter-
mined based on five input parameters, F, A, T, Z and N and a
function Partition] |. The five input parameters are defined as
follows:

F the size of the file, in bytes

A a symbol alignment parameter, in bytes

T the symbol size, in bytes, which must be a multiple of A
Z the number of source blocks

N the number of sub-blocks in each source block

US 9,236,887 B2

21

These parameters might be set so that ceil(ceil(F/T)/Z)
=K, ;v Recommendations for derivation of these parameters
are provided in Section B.3.4.

The function Partition[| takes a pair of integers (I, J) as
input and derives four integers (I, I, J;, J5) as output. Spe-
cifically, the value of Partition[I, J] is a sequence of four
integers (1, I, J;, I5), where I,=ceil(I/]), Is~tloor(I/J), I, =I-
14T and J=J-J;. Partition[] derives parameters for partition-
ing a block of size I into J approximately equal sized blocks.
Specifically, J, blocks of length I, and J blocks of length 1.

The source file might be partitioned into source blocks and
sub-blocks as follows:

Let,
K,=ceil(F/T)
K. Ky, Z;, Zs)=Partition[K,, Z]

(T, Ts, Ny, Ng)=Partition[T/A, N]

Then, the file might be partitioned into Z=7, +Z contigu-
ous source blocks, the first Z, source blocks each having
length K, T bytes and the remaining Z source blocks each
having KT bytes.

If K, T>F then for encoding purposes, the last symbol
might be padded at the end with K, T-F zero bytes.

Next, each source block might be divided into N=N,+Ng
contiguous sub-blocks, the first N; sub-blocks each compris-
ing K contiguous sub-symbols of size of T, - A and the remain-
ing N sub-blocks each comprising K contiguous sub-sym-
bols of size of Ty A. The symbol alignment parameter A
ensures that sub-symbols are always a multiple of A bytes.

Finally, the mth symbol of a source block comprises the
concatenation of the mth sub-symbol from each of the N
sub-blocks.

B.3.2. Encoding Packet Construction

B.3.2.1. General

Each encoding packet contains the following information:
Source Block Number (SBN)

Encoding Symbol ID (ESI)
encoding symbol(s)

Each source block is encoded independently of the others.
Source blocks are numbered consecutively from zero.

Encoding Symbol ID values from 0 to K-1 identify the
source symbols. Encoding Symbol IDs from K onwards iden-
tify repair symbols.

B.3.2.2 Encoding Packet Construction

Each encoding packet preferably either consists entirely of
source symbols (source packet) or entirely of repair symbols
(repair packet). A packet may contain any number of symbols
from the same source block. In the case that the last symbol in
the packet includes padding bytes added for FEC encoding
purposes then these bytes need not be included in the packet.
Otherwise, only whole symbols might be included.

The Encoding Symbol ID, X, carried in each source packet
is the Encoding Symbol ID of the first source symbol carried
in that packet. The subsequent source symbols in the packet
have Encoding Symbol IDs, X+1 to X+G-1, in sequential
order, where G is the number of symbols in the packet.

Similarly, the Encoding Symbol ID, X, placed into a repair
packet is the Encoding Symbol ID of the first repair symbol in
the repair packet and the subsequent repair symbols in the
packet have Encoding Symbol IDs X+1 to X+G-1 in sequen-
tial order, where G is the number of symbols in the packet.

Note that it is not necessary for the receiver to know the
total number of repair packets. The G repair symbol triples
(d[0], a[0], b[O]), . . ., (d[G-1], a[G-1], b| G-1]) for the repair
symbols placed into a repair packet with ESI X are computed
using the Triple generator defined in B.5.3.4 as follows:

10

15

20

25

30

35

40

45

50

55

60

65

22
For eachi=0, ..., G-1
(d[il, a[i], b[iD)=Trip[K,X+i]

The G repair symbols to be placed in repair packet with ESI
X are calculated based on the repair symbol triples as
described in Section B.5.3 using the intermediate symbols C
and the LT encoder LTenc[K, C, (d[i], a[i], b[i])]-

B.3.3. Transport

This section describes the information exchange between
the MSCR encoder/decoder and any transport protocol mak-
ing use of MSCR forward error correction for file delivery.

The MSCR encoder and decoder for file delivery require
the following information from the transport protocol: the file
size, F, in bytes, the symbol alignment parameter, A, the
symbol size, T, in bytes, which is a multiple of A, the number
of source blocks, Z, the number of sub-blocks in each source
block, N. The MSCR encoder for file delivery additionally
requires the file to be encoded, F bytes.

The MSCR encoder supplies the transport protocol with
encoding packet information comprising, for each packet, the
SBN, the ESI and the encoding symbol(s). The transport
protocol might communicate this information transparently
to the MSCR decoder.

B.3.4. Recommended Parameters (Informative)

B.3.4.1 Parameter Derivation Algorithm

This section provides recommendations for the derivation
of the four transport parameters, A, T, Z and N. This recom-
mendation is based on the following input parameters:

F the file size, in bytes

W a target on the sub-block size, in bytes

P the maximum packet payload size, in bytes, which is
assumed to be a multiple of A

A the symbol alignment factor, in bytes

K, . the maximum number of source symbols per source
block.

K, zya minimum target on the number of symbols per source
block

G .43 @ maximum target number of symbols per packet

Based on the above inputs, the transport parameters T, Z

and N are calculated as follows:

Let,

G=min{ceil(PK,,/F), P/A, G,,,}—the approximate
number of symbols per packet

T=floor(P/(A-G))-A

K,=ceil(F/T)—the total number of symbols in the file

Z=ceill(K/K,,,+x)

N=min{ceil(ceil(K/Z)- T/W), T/A}

The values of G and N derived above should be considered
as lower bounds. It may be advantageous to increase these
values, for example to the nearest power of two. In particular,
the above algorithm does not guarantee that the symbol size,
T, divides the maximum packet size, P, and so it may not be
possible to use the packets of size exactly P. If, instead, G is
chosen to be a value which divides P/A, then the symbol size,
T, will be a divisor of P and packets of size P can be used.

Recommended settings for the input parameters, W, A,
K,z and G, are as follows:

W=256 KB A=4 K, ,,»,~=1024 G,,,,~10

B.3.4.2 Examples

The above algorithm leads to transport parameters as
shown in FIG. 18, assuming the recommended values for W,
A, K, vand G, ., and P=512.

B.4. Streaming

B.4.1. Source Block Construction

A source block is constructed by the transport protocol, for
example as defined in this document, making use of the Sys-
tematic MSCR Forward Error Correction code. The symbol
size, T, to be used for source block construction and the repair

US 9,236,887 B2

23

symbol construction are provided by the transport protocol.
The parameter T might be set so that the number of source
symbols in any source block is at most K, ., +-

Recommended parameters are presented in section B.4.4.

B.4.2. Encoding Packet Construction

As described in B.4.3., each repair packet contains the
SBN, ESI, SBL and repair symbol(s). The number of repair
symbols contained within a repair packet is computed from
the packet length. The ESI values placed into the repair pack-
ets and the repair symbol triples used to generate the repair
symbols are computed as described in Section B.3.2.2.

B.4.3. Transport

This section describes the information exchange between
the MSCR encoder/decoder and any transport protocol mak-
ing use of MSCR forward error correction for streaming. The
MSCR encoder for streaming might use the following infor-
mation from the transport protocol for each source block: the
symbol size, T, in bytes, the number of symbols in the source
block, K, the Source Block Number (SBN) and the source
symbols to be encoded, KT bytes. The MSCR encoder sup-
plies the transport protocol with encoding packet information
comprising, for each repair packet, the SBN, the ESI, the SBL.
and the repair symbol(s). The transport protocol might com-
municate this information transparently to the MSCR
decoder.

B.4.4. Recommended Parameters

B.4.4.1 Parameter Derivation Algorithm

This section provides recommendations for the derivation
of the transport parameter T. This recommendation is based
on the following input parameters:

B the maximum source block size, in bytes

P the maximum repair packet payload size, in bytes, which is a
multiple of A

A the symbol alignment factor, in bytes

Karax the maximum number of source symbols per source block.

Kaan a minimum target on the number of symbols per source block

Gurax a maximum target number of symbols per repair packet

A requirement on these inputs is that ceil(B/P)=K, ,+
Based on the above inputs, the transport parameter T is cal-
culated as follows:

Let G=min {ceil(P-K,,»/B), P/A, G,,x}—the approxi-
mate number of symbols per packet

T=floor(P/(4-G))4

The value of T derived above should be considered as a
guide to the actual value of T used. It may be advantageous to
ensure that T divides into P, or it may be advantageous to set
the value of T smaller to minimize wastage when full size
repair symbols are used to recover partial source symbols at
the end of lost source packets (as long as the maximum
number of source symbols in a source block does not exceed
K, .v)- Furthermore, the choice of T may depend on the
source packet size distribution, e.g., if all source packets are
the same size then it is advantageous to choose T so that the
actual payload size of a repair packet P', where P' is a multiple
of T, is equal to (or as few bytes as possible larger than) the
number of bytes each source packet occupies in the source
block.

Recommended settings for the input parameters, A, K, ;.-
and G, are as follows:

A=4K,,,~1024 G,,,,~10

B.4.4.2 Examples

The above algorithm leads to transport parameters as
shown in FIG. 19, assuming the recommended values for A,
Kymv and G, ., -and P=512.

10

15

20

25

30

35

40

45

50

55

60

65

24
B.5. Systematic MSCR Encoder

B.5.1. Encoding Overview

The systematic MSCR encoder is used to generate repair
symbols from a source block that comprises K source sym-
bols.

Symbols are the fundamental data units of the encoding
and decoding process. For each source block (sub-block) all
symbols (sub-symbols) are the same size. The atomic opera-
tion performed on symbols (sub-symbols) for both encoding
and decoding is the exclusive-or operation.

Let C'[0], . . ., C'[K-1] denote the K source symbols.
Let C[0], . .., C[L-1] denote L intermediate symbols.

The first step of encoding is to generate a number, L>K, of
intermediate symbols from the K source symbols. Inthis step,
K source triples (d[0], a[0], b[O]), . . ., (d[K-1], a|K-1],
b[K-1]) are generated using the Trip[| generator as described
in Section B.5.4.4. The K source triples are associated with
the K source symbols and are then used to determine the L
intermediate symbols C[0], . . . , C[L-1] from the source
symbols using an inverse encoding process. This process can
be can be realized by a MSCR decoding process.

Certain “pre-coding relationships” must hold within the L.
intermediate symbols. Section B.5.2 describes these relation-
ships and how the intermediate symbols are generated from
the source symbols.

Once the intermediate symbols have been generated, repair
symbols are produced and one or more repair symbols are
placed as a group into a single data packet. Each repair sym-
bol group is associated with an Encoding Symbol ID (ESI)
and a number, G, of encoding symbols. The ESI is used to
generate a triple of three integers, (d, a, b) for each repair
symbol, again using the Trip[| generator as described in
Section B.5.4.4. This is done as described in Sections B.3 and
B.4 using the generators described in Section B.5.4. Then,
each (d,a,b)-triple is used to generate the corresponding
repair symbol from the intermediate symbols using the
LTEnc[K, C[0], ..., C[L-1], (d,a,b)] generator described in
Section B.5.4.3.

B.5.2. First Encoding Step: Intermediate Symbol Genera-
tion

B.5.2.1General

The first encoding step is a pre-coding step to generate the
L intermediate symbols C[0], . . ., C[L-1] from the source
symbols C'[0], . . ., C'[K-1]. The intermediate symbols are
uniquely defined by two sets of constraints:

1. The intermediate symbols are related to the source symbols
by a set of source symbol triples. The generation of the source
symbol triples is defined in Section B.5.2.2 using the Trip| |
generator as described in Section B.5.4.4.

2. A set of pre-coding relationships hold within the interme-
diate symbols themselves. These are defined in Section
B.5.23.

The generation of the L intermediate symbols is then
defined in Section 5.2.4.

B.5.2.2 Source Symbol Triples

Each of the K source symbols is associated with a triple
(d[i], ali], b[i]) for 0=i<K. The source symbol triples are
determined using the Triple generator defined in Section
B.5.4.4 as:

For each i, 0=i<K
(d[i}, a[i], b[i])=Trip(K, i

8.5.2.3 Pre-Coding Relationships

The pre-coding relationships amongst the L intermediate
symbols are defined by expressing the last [.-K intermediate
symbols in terms of the first K intermediate symbols.

US 9,236,887 B2

25

The last L-K intermediate symbols C[K], . . . , C[L-1]
comprise S LDPC symbols and H Half symbols The values of
S and H are determined from K as described below. Then
L=K+S+H.
Let
X be the smallest positive integer such that X-(X-1)=2-K.
S be the smallest prime integer such that S=ceil(0.01-K)+X
H be the smallest integer such that choose (H, ceil(H/2))
=zK+S
H'=ceil(H/2)L=K+S+H

C[0], . .., C[K-1] denote the first K intermediate symbols
C[K], ..., C[K+S-1] denote the S LDPC symbols, initialised
to zero

C[K+S], ..., C[L-1] denote the H Half symbols, initialised
to zero

The S LDPC symbols are defined to be the values of
C[K], ..., CI[K+S-1] at the end of the following process:
Fori=0, ..., K-1do
a=1+(tloor(i/S) % (S-1))
b=1%S
C[K+b]=C[K+b]"C[i]
b=(b+a) % S
C[K+b]=C[K+b]"C[i]
b=(b+a) % S
C[K+b]=C[K+b]"C[i]

The H Half symbols are defined as follows:

Let

gli]=i “(floor(i/2)) for all positive integers i

Note: g[i] is the Gray sequence, in which each element differs
from the previous one in a single bit position

g[j, k] denote the j* element, j=0, 1,2, . . ., of the subsequence
of g[i] whose elements have exactly k non-zero bits in their
binary representation

Then, the Half symbols are defined as the values of C[K+
S], ..., C[L-1] after the following process:

Forh=0, ..., H-1do

Forj=0, ..., K+S-1do

If bit h of g[j,H'] is equal to 1 then C[h+K+S]=C[h+K+S]"
C[jl-

B.5.2.4 Intermediate Symbols

B.5.2.4.1 Definition

Given the K source symbols C'[0], C'[1], . .., C'[K-1] the
L intermediate symbols C[0], C[1], . . ., C[L-1] are the
uniquely defined symbol values that satisfy the following
conditions:

1. The K source symbols C'[0], C'[1], ..
K constraints
C'i]=LTEnc[K, (C[O], ..
1, O=i<K.

2.The L intermediate symbols C[0], C[1], . .., C[L-1] satisfy
the pre-coding relationships defined in B.5.2.3.

B.5.2.4.2 Calculation of Intermediate Symbols

This subsection describes a possible method for calcula-
tion of the L. intermediate symbols C[0], C[1], ..., C[L-1]
satisfying the constraints in B.5.2.4.1

The generator matrix G for a code which generates N
output symbols from K input symbols is an NxK matrix over
GF(2), where each row corresponds to one of the output
symbols and each column to one of the input symbols and
where the i output symbol is equal to the sum of those input
symbols whose column contains a non-zero entry in row i.

Then, the L. intermediate symbols can be calculated as
follows:

Let
C denote the column vector of the L. intermediate symbols,
Clol, C[1y, ..., C[L-1].

., C'[K-1] satisfy the

.. C[L~11), (d[i]. a[i], b[i])]. for all

10

20

25

40

45

50

55

65

26

D denote the column vector comprising S+H zero symbols
followed by the K source symbols C'[0], C'[1], C'[K-1]
Then the above constraints define an L.xI matrix over GF(2),
A, such that:
A-C=D

The matrix A can be constructed as follows:
Let:
G; ppce be the SxK generator matrix of the LDPC symbols.
So,
Grppc(ClO], . . ., CIK-1)"=(C[K], . . ., C[K+S-1])T
Gy,yrbe the Hx(K+S) generator matrix of the Half symbols,
So,
Grarf (CIO], . .., C[S+K-1])"=(C[K+S], ..
I be the SxS identity matrix
1;; be the HxH identity matrix
0, ;7 be the SxH zero matrix
G, be the KL generator matrix of the encoding symbols
generated by the LT Encoder.
So,
G, (C[0], ..., CIL-1)"™=(C1], ..., C[K-1])7
ie. Gyp =1 if and only if C[i] is included in the symbols
which are XORed to produce LTEnc[K, (C[0], ..., C[L-1]),
(d[il, alil. bLiDI.
Then:
The first S rows of A are equal to G ppcllslZ g 7
The next H rows of A are equal to G, A1,
The remaining K rows of A are equal to G, ;.

The matrix A is depicted in FIG. 20. The intermediate
symbols can then be calculated as:

., C[K+S+H-1])"

C=4""D

The source triples are generated such that for any K matrix
A has full rank and is therefore invertible. This calculation can
be realized by applying a MSCR decoding process to the K
source symbols C'[0], C'[1], . . ., C'[K-1] to produce the L.
intermediate symbols C[0], C[1], ..., C[L-1].

To efficiently generate the intermediate symbols from the
source symbols, it is recommended that an efficient decoder
implementation such as that described in Section B.6 be used.
The source symbol triples are designed to facilitate efficient
decoding of the source symbols using that algorithm.

B.5.3. Second Encoding Step: LT Encoding

In the second encoding step, the repair symbol with ESI X
is generated by applying the generator LTEnc[K, (C[0],
C[1],...,C[L-1]), (d, a, b)] defined in Section B.5.4 to the L
intermediate symbols C[0], C[1], ..., C[L-1] using the triple
(d, a, b)=Trip[K,X] generated according to Sections B.3.2.2
and B.4.2.

B.5.4. Generators

B.5.4.1 Random Generator

The random number generator Rand[X, i, m] is defined as
follows, where X is a non-negative integer, 1is a non-negative
integer and m is a positive integer and the value produced is an
integer between 0 and m-1. Let V, and V| be arrays of 256
entries each, where each entry is a 4-byte unsigned integer.
These arrays are provided in Section B.7.

Then,
Rand[X, i, m]=(V [(X+) % 256]"V,[(floor(X/256)+i) %
256]) % m

B.5.4.2 Degree Generator

The degree generator Deg[v] is defined as follows, where v
is an integer that is at least O and less than 22°=1048576.

In FIG. 21, find the index j such that {]j-1]=v<{]j]
Deg[v]d[j]

B.5.4.3 LT Encoding Symbol Generator

The encoding symbol generator L[TEnc[K, (C[O],
C[1],..., C[L-1]), (d, a, b)] takes the following inputs:

US 9,236,887 B2

27
K is the number of source symbols (or sub-symbols) for the
source block (sub-block). Let L be derived from K as
described in Section B.5.2, and let L' be the smallest prime
integer greater than or equal to L.
(Clo], C[1], . . ., C[L-1]) is the array of L intermediate
symbols (sub-symbols) generated as described in Section
B52
(d, a, b) is a source triple determined using the Triple genera-
tor defined in Section B.5.3.4, whereby d is an integer denot-
ing an encoding symbol degree, a is an integer between 1 and
L'-1 inclusive and b is an integer between 0 and L'-1 inclu-
sive.

The encoding symbol generator produces a single encod-
ing symbol as output, according to the following algorithm:
While (bzL) do b=(b+a) % L'

LTEnc[K, (C[O0], C[1], ..., C[L-1]), (d, a, b)]=C[b].
Forj=1, ..., min(d-1, L.-1) do

b=(b+a) % L'

While (bzL) do b=(b+a) % L'

LTEnc[K, (C[0], C[1], . . ., C[L-1]), (d, a, b)]=LTEnc[K,
(C[o], C[1], . . ., C[L-1]), (d, a, b)]"C[b]

B.5.4.4 Triple Generator

The triple generator Trip|K,X] takes the following inputs:
K The number of source symbols
X An encoding symbol ID
Let
L be determined from K as described in Section B.5.2
L' be the smallest prime that is greater than or equal to L
Q=65521, the largest prime smaller than 2"¢.

J(K) be the systematic index associated with K, as defined in
Appendix A

The output of the triple generator is a triples, (d, a, b)

determined as follows:

1. A=(53591+IJ(K)-997) % Q

2. B=10267-(J(K)+1) % Q
3.Y=B+X-A) % Q

4. v=Rand[Y, 0, 2*°]

5. d=Deg|v]

6. a=1+Rand[Y, 1, L'-1]

7. b=Rand[Y, 2, L]

B.6 FEC Decoder Implementations

B.6.1 General

This section describes an efficient decoding algorithm for
the MSCR codes described in this specification. Note that
each received encoding symbol can be considered as the value
of an equation amongst the intermediate symbols. From these
simultaneous equations, and the known pre-coding relation-
ships amongst the intermediate symbols, any algorithm for
solving simultaneous equations can successfully decode the
intermediate symbols and hence the source symbols. How-
ever, the algorithm chosen has a major effect on the compu-
tational efficiency of the decoding.

B.6.2 Decoding a Source Block

B.6.2.1 General

It is assumed that the decoder knows the structure of the
source block it is to decode, including the symbol size, T, and
the number K of symbols in the source block.

From the algorithms described in Sections B.5, the MSCR
decoder can calculate the total number L=K+S+H of pre-
coding symbols and determine how they were generated from
the source block to be decoded. In this description it is
assumed that the received encoding symbols for the source
block to be decoded are passed to the decoder. Furthermore,
for each such encoding symbol it is assumed that the number
and set of intermediate symbols whose exclusive-or is equal
to the encoding symbol is passed to the decoder. In the case of
source symbols, the source symbol triples described in Sec-

10

15

20

25

30

35

40

45

50

55

60

65

28

tion 8.5.2.2 indicate the number and set of intermediate sym-
bols which sum to give each source symbol.

Let NzK be the number of received encoding symbols for
a source block and let M=S+H+N. The following M by L bit
matrix A can be derived from the information passed to the
decoder for the source block to be decoded. Let C be the
column vector of the L. intermediate symbols, and let D be the
column vector of M symbols with values known to the
receiver, where the first S+H of the M symbols are zero-
valued symbols that correspond to LDPC and Half symbols
(these are check symbols for the LDPC and Half symbols, and
not the LDPC and Half symbols themselves), and the remain-
ing N ofthe M symbols are the received encoding symbols for
the source block. Then, A is the bit matrix that satisfies
A-C=D, where here - denotes matrix multiplication over
GF[2]. In particular, A[i, j]=1 if the intermediate symbol
corresponding to index j is exclusive-ORed into the LDPC,
Half or encoding symbol corresponding to index i in the
encoding, or if index i corresponds to a LDPC or Half symbol
and index j corresponds to the same LDPC or Half symbol.
For all other i and j, Ali, j]=0.

Decoding a source block is equivalent to decoding C from
known A and D. It is clear that C can be decoded if and only
if the rank of A over GF[2] is L. Once C has been decoded,
missing source symbols can be obtained by using the source
symbol triples to determine the number and set of intermedi-
ate symbols which are exclusive-ORed to obtain each missing
source symbol.

The first step in decoding C is to form a decoding schedule.
In this step A is converted, using Gaussian elimination (using
row operations and row and column reorderings) and after
discarding M-L rows, into the L by L identity matrix. The
decoding schedule comprises the sequence of row operations
and row and column re-orderings during the Gaussian elimi-
nation process, and only depends on A and not on D. The
decoding of C from D can take place concurrently with the
forming of the decoding schedule, or the decoding can take
place afterwards based on the decoding schedule.

The correspondence between the decoding schedule and
the decoding of C is as follows. Let ¢[0]=0, c[1]=1 . . .,
c[L-1]=L-1 and d[0]=0, d[1]=1 . . ., d[M-1]=M-1 initially.

Each time row i of A is exclusive-ORed into row i' in the
decoding schedule then in the decoding process symbol
DI[d[i]] is exclusive-ORed into symbol D[d[1']].

Each time row i is exchanged with row i' in the decoding
schedule then in the decoding process the value of d[i] is
exchanged with the value of d[i"].

Each time column j is exchanged with column j' in the
decoding schedule then in the decoding process the
value of c[j] is exchanged with the value of c[j'].

From this correspondence it is clear that the total number of
exclusive-ORs of symbols in the decoding of the source block
is the number of row operations (not exchanges) in the Gaus-
sian elimination. Since A is the L by L identity matrix after the
Gaussian elimination and after discarding the last M-L rows,
it is clear at the end of successful decoding that the [symbols
D[d[0]], D[d[1]], . . ., D[d[L-1]] are the values of the L
symbols C[c[0]], C[c[1]], . . ., C[¢[L-1]].

The order in which Gaussian elimination is performed to
form the decoding schedule has no bearing on whether or not
the decoding is successful. However, the speed of the decod-
ing depends heavily on the order in which Gaussian elimina-
tion is performed. (Furthermore, maintaining a sparse repre-
sentation of A is crucial, although this is not described here).
The remainder of this section describes an order in which
Gaussian elimination could be performed that is relatively
efficient.

US 9,236,887 B2

29

B.6.2.2 First Phase

The first phase of the Gaussian elimination the matrix A is
conceptually partitioned into submatrices. The submatrix
sizes are parameterized by non-negative integers i and u
which are initialized to 0. The submatrices of A are:

(1) The submatrix I defined by the intersection of the first i
rows and first i columns. This is the identity matrix at the end
of each step in the phase.

(2) The submatrix defined by the intersection of the first i rows
and all but the first i columns and last u columns. All entries
of this submatrix are zero.

(3) The submatrix defined by the intersection of the first i
columns and all but the first i rows. All entries of this subma-
trix are zero.

(4) The submatrix U defined by the intersection of all the rows
and the last u columns.

(5) The submatrix V formed by the intersection of all but the
first i columns and the last u columns and all but the first i
rOws.

FIG. 22 illustrates the submatrices of A. At the beginning of
the first phase V=A. In each step, a row of A is chosen. The
following graph defined by the structure of V is used in
determining which row of A is chosen. The columns that
intersect V are the nodes in the graph, and the rows that have
exactly 2 ones in'V are the edges of the graph that connect the
two columns (nodes) in the positions of the two ones. A
component in this graph is a maximal set of nodes (columns)
and edges (rows) such that there is a path between each pair of
nodes/edges in the graph. The size of a component is the
number of nodes (columns) in the component.

There are at most L steps in the first phase. The phase ends
successfully when i+u=L, i.e., when V and the all zeroes
submatrix above V have disappeared and A comprises I, the
all zeroes submatrix below I, and U. The phase ends unsuc-
cessfully in decoding failure if at some step before V disap-
pears there is no non-zero row in 'V to choose in that step. In
each step, a row of A is chosen as follows:

If all entries of V are zero then no row is chosen and decoding
fails.

Let r be the minimum integer such that at least one row of A
has exactly r ones in V.

If r=2 then choose a row with exactly r ones in V with mini-
mum original degree among all such rows.

Ifr=2 then choose any row with exactly 2 ones in'V that is part
of'a maximum size component in the graph defined by X.

After the row is chosen in this step the first row of A that
intersects V is exchanged with the chosen row so that the
chosen row is the first row that intersects V. The columns of A
among those that intersect V are reordered so that one of the
r ones in the chosen row appears in the first column of V and
so that the remaining r-1 ones appear in the last columns of V.
Then, the chosen row is exclusive-ORed into all the other
rows of A below the chosen row that have a one in the first
column of V. Finally, i is incremented by 1 and u is incre-
mented by r-1, which completes the step.

B.6.2.3 Second Phase

The submatrix U is further partitioned into the first i rows,
U, per» and the remaining M—i rows, Uy,,,..,. Gaussian elimi-
nation is performed in the second phase on U,,,, ., to either
determine that its rank is less than u (decoding failure) or to
convert it into a matrix where the first u rows is the identity
matrix (success of the second phase). Call this u by u identity
matrix [,. The M-L rows of A that intersect U, -1, are
discarded. After this phase A has L. rows and L columns.

B.6.2.4 Third Phase

After the second phase the only portion of A which needs to
be zeroed out to finish converting A into the L by L identity

10

15

20

25

30

35

40

45

50

55

60

65

30

matrixis U,,,.,. The number of rows i of the submatrix U,
is generally much larger than the number of columns u of
U, ,per To zero out U, ., efficiently, the following precom-
putation matrix U' is computed based on [, in the third phase
and then U' is used in the fourth phase to zero out U, ... The
u rows of I, are partitioned into ceil(u/8) groups of 8 rows
each. Then, for each group of 8 rows all non-zero combina-
tions of the 8 rows are computed, resulting in 28-1=255 rows
(this can be done with 28-8-1=247 exclusive-ors of rows per
group, since the combinations of Hamming weight one that
appearin I, do not need to be recomputed). Thus, the resulting
precomputation matrix U' has ceil(u/8)-255 rows and u col-
umns. Note that U' is not formally a part of matrix A, but will
be used in the fourth phase to zero out U

B.6.2.5 Fourth Phase

For each ofthe first i rows of A, for each group of 8 columns
in the U, submatrix of this row, if the set of 8 column
entries in U, are not all zero then the row of the precom-
putation matrix U' that matches the pattern in the 8 columns is
exclusive-ORed into the row, thus zeroing out those 8 col-
umns in the row at the cost of exclusive-oring one row of U’
into the row.

After this phase A is the L. by L identity matrix and a
complete decoding schedule has been successtully formed.
Then, the corresponding decoding comprising exclusive-OR-
ing known encoding symbols can be executed to recover the
intermediate symbols based on the decoding schedule.

The triples associated with all source symbols are com-
puted according to B.5.2.2. The triples for received source
symbols are used in the decoding. The triples for missing
source symbols are used to determine which intermediate
symbols need to be exclusive-ORed to recover the missing
source symbols.

Some Properties of Some Multi-Stage Codes

In most of the examples described above, the input and
output symbols encode 98 for the same number of bits and
each output symbol is placed in one packet (a packet being a
unit of transport that is either received in its entirety or lost in
its entirety). In some embodiments, the communications sys-
tem is modified so that each packet contains several output
symbols. The size of an output symbol value is then set to a
size determined by the size of the input symbol values in the
initial splitting of the file or blocks of the stream into input
symbols, based on a number of factors. The decoding process
remains essentially unchanged, except that output symbols
arrive in bunches as each packet is received.

The setting of input symbol and output symbol sizes is
usually dictated by the size of the file or block of the stream
and the communication system over which the output sym-
bols are to be transmitted. For example, if a communication
system groups bits of data into packets of a defined size or
groups bits in other ways, the design of symbol sizes begins
with the packet or grouping size. From there, a designer
would determine how many output symbols will be carried in
one packet or group and that determines the output symbol
size. For simplicity, the designer would likely set the input
symbol size equal to the output symbol size, but if the input
data makes a different input symbol size more convenient, it
can be used.

The above-described encoding process produces a stream
of packets containing output symbols based on the original
file or block of the stream. Each output symbol in the stream
is generated independently of all other output symbols, and
there is no lower or upper bound on the number of output
symbols that can be created. A key is associated with each
output symbol. That key, and some contents of the input file or
block of the stream, determines the value of the output sym-

upper*

US 9,236,887 B2

31

bol. Consecutively generated output symbols need not have
consecutive keys, and in some applications it would be pref-
erable to randomly generate the sequence of keys, or pseudo-
randomly generate the sequence.

Multi-stage decoding has a property that if the original file
or block of the stream can be split into K equal-sized input
symbols and each output symbol value is the same length as
an input symbol value, then the file or block can be recovered
from K+A output symbols on average, with very high prob-
ability, where A is small compared to K. For example, for the
weight distributions introduced above, the probability that the
value of A exceeds a*K is at most 107'2 if K is larger than
19,681, and it is at most 107'° for any value of K. Since the
particular output symbols are generated in a random or pseu-
dorandom order, and the loss of particular output symbols in
transit is assumed random, some small variance exists in the
actual number of output symbols needed to recover the input
file or block. In some cases, where a particular collection of
K+A packets are not enough to decode the entire input file or
block, the input file or block is still recoverable if the receiver
can gather more packets from one or more sources of output
packets.

Because the number of output symbols is only limited by
the resolution of I, well more than K+A output symbols canbe
generated. For example, if I is a 32-bit number, 4 billion
different output symbols could be generated, whereas the file
or block of'the stream could include K=50,000 input symbols.
In some applications, only a small number of those 4 billion
output symbols may be generated and transmitted and it is a
near certainty that an input file or block of a stream can be
recovered with a very small fraction of the possible output
symbols and an excellent probability that the input file or
block can be recovered with slightly more than K output
symbols (assuming that the input symbol size is the same as
the output symbol size).

In some applications, it may be acceptable to not be able to
decode all of the input symbols, or to be able to decode all of
input symbols, but with a relatively low probability. In such
applications, a receiver can stop attempting to decode all of
the input symbols after receiving K+A output symbols. Or,
the receiver can stop receiving output symbols after receiving
less than K+A output symbols. In some applications, the
receiver may even only receive K or less output symbols.
Thus, it is to be understood that in some embodiments of the
present invention, the desired degree of accuracy need not be
complete recovery of all the input symbols.

Further, in some applications where incomplete recovery is
acceptable, the data can be encoded such that all of the input
symbols cannot be recovered, or such that complete recovery
of the input symbols would require reception of many more
output symbols than the number of input symbols. Such an
encoding would generally require less computational
expense, and may thus be an acceptable way to decrease the
computational expense of encoding.

It is to be understood that the various functional blocks in
the above-described figures may be implemented by a com-
bination of hardware and/or software, and that in specific
implementations some or all of the functionality of some of
the blocks may be combined. Similarly, it is also to be under-
stood that the various methods described herein may be
implemented by a combination of hardware and/or software.

The above description is illustrative and not restrictive.
Many variations of the invention will become apparent to
those of skill in the art upon review of this disclosure. The
scope of the invention should, therefore, be determined not
with reference to the above description, but instead should be

15

20

25

30

35

40

45

50

55

60

65

32

determined with reference to the appended claims along with
their full scope of equivalents.

What is claimed is:
1. A method of encoding data for transmission from a
source to a destination over a communications channel,
wherein the data for transmission is representable by an
ordered set of input symbols, the method comprising:
generating a plurality of redundant symbols from the
ordered set of input symbols, wherein each redundant
symbol in the plurality of redundant symbols is calcu-
lated using one or more of the ordered set of input
symbols; and
generating a plurality of output symbols from a combined
set of symbols including the input symbols and the
redundant symbols, wherein the number of possible out-
put symbols is much larger than the number of symbols
in the combined set of symbols, wherein at least one
output symbol is generated from more than one symbol
in the combined set of symbols and from less than all of
the symbols in the combined set of symbols,
wherein the generating of the plurality of redundant sym-
bols is done using a deterministic process that ensures
low common membership among redundant symbols,

wherein common membership between two redundant
symbols is the set of input symbols that both redundant
symbols depend upon and wherein low common mem-
bership between two redundant symbols is present when
the number of input symbols that both redundant sym-
bols depend upon is less than a threshold as given by said
process and

wherein for each input symbol there is a predetermined

number of redundant symbols that depend upon said
input symbol.

2. The method of claim 1, further comprising transmitting
the plurality of output symbols over said communications
channel.

3. The method of claim 1, further comprising storing the
plurality of output symbols on a storage media.

4. The method of claim 1, wherein the plurality of redun-
dant symbols is generated according to a LDPC code.

5. The method of claim 1, wherein output symbols are such
that the ordered set of input symbols can be regenerated from
any predetermined number, N, of the output symbols, where
N is slightly larger than the number of input symbols.

6. The method of claim 1, wherein the output symbols are
such that there is a high probability that the ordered set of
input symbols can be regenerated from N of the output sym-
bols where N is at least as large as the number of input
symbols.

7. The method of claim 1, wherein the output symbols are
such that G of the ordered set of input symbols can be regen-
erated from K of'the output symbols where K is the number of
input symbols and G is less than K.

8. The method of claim 1, wherein at most G input symbols
can be regenerated from any number of output symbols,
wherein G is less than the number of input symbols in the
ordered set of input symbols.

9. The method of claim 1, wherein generating a plurality of
redundant symbols includes, for each redundant symbol:

determining t distinct input symbols according to a weight

distribution; and

computing each redundant symbol as the XOR of the t

distinct input symbols.

10. The method of claim 1, further comprising transmitting
the plurality of output symbols over said communications
channel, wherein the step of generating the plurality of output

US 9,236,887 B2

33

symbols is performed substantially concurrently with the step
of transmitting the plurality of output symbols.

11. The method of claim 1, wherein the plurality of redun-
dant symbols comprises static symbols, Hamming symbols
and padding symbols, wherein the sum of the number of
symbols is selected to be a prime number.

12. The method of claim 1, wherein the predefined thresh-
old is six, such that for any two distinct redundant symbols,
the sets of input symbols that each of those two distinct
redundant symbols depend on have at most six input symbols
in common.

13. The method of claim 1, wherein generating the plurality
of redundant symbols using one or more of the ordered set of
input symbols comprises:

initializing an array C[K], ..., C[K+S-1] so that each array
element is a known value, wherein K is the number of
input symbols and S is the number of redundant symbols
to be generated and C[0], .. ., C[K-1] corresponds to the
K input symbols;

performing the following steps, with a counter i=0,
wherein a and b are intermediate variables, “%” repre-
sents a modulo operation, floor() is a function represent-
ing a highest integer value that is less than the function’s
argument, and ‘" represents a bitwise XOR operation:

(1) a=1+(floor(i/S) % (S-1))

@)b=1%S

(3) C[K+b]=C[K+b]"C[i]

4) b=(b+a) % S

(5) C[K+b]=C[K+b]"C[i]

(6) b=(b+a) % S

(7) C[K+b]=C[K+b]"C[i]

repeating those steps, for each value of counter i from 1 to
K-1; and

outputting at least the resulting array C[K], . .
as the plurality of S redundant symbols.

14. The method of claim 13, wherein S is the smallest
prime integer such that Szceil(0.01-K)+X, where X is the
smallest positive integer such that X-(X-1)=2-K.

15. The method of claim 1, wherein for each input symbol
the predetermined number of redundant symbols that depend
upon said input symbol is three.

16. A system for encoding data for transmission from a
source to a destination over a communications channel,
wherein the data for transmission is representable by an
ordered set of input symbols, the system comprising:

a static encoder configured to generate a plurality of redun-
dant symbols from the ordered set of input symbols,
wherein each redundant symbol in the plurality of
redundant symbols is calculated using one or more of the
ordered set of input symbols; and

a dynamic encoder communicatively coupled to the static
encoder and configured to generate a plurality of output
symbols from a combined set of symbols including the
input symbols and the redundant symbols, wherein the
number of possible output symbols is much larger than
the number of symbols in the combined set of symbols,
wherein at least one output symbol is generated from
more than one symbol in the combined set of symbols
and from less than all of the symbols in the combined set
of' symbols,

wherein the static encoder is configured to generate the
plurality of redundant symbols using a deterministic
process that ensures low common membership among
redundant symbols,

wherein common membership between two redundant
symbols is the set of input symbols that both redundant
symbols depend upon and wherein low common mem-

., C[K+S-1]

5

10

15

20

25

30

35

40

45

50

55

60

65

34

bership between two redundant symbols is present when
the number of input symbols that both redundant sym-
bols depend upon is less than a threshold as given by said
process and

wherein for each input symbol there is a predetermined

number of redundant symbols that depend upon said
input symbol.
17. The system of claim 16, further comprising a transmit
module communicatively coupled to the dynamic encoder
and configured to transmit the plurality of output symbols
over said communications channel.
18. The system of claim 16, wherein the static encoder is
configured to generate the plurality of redundant symbols
using one or more of the ordered set of input symbols includ-
ing:
initializing an array C[K], . .., C[K+S-1] so that each array
element is a known value, wherein K is the number of
input symbols and S is the number of redundant symbols
to be generated and C[0], .. ., C[K-1] corresponds to the
K input symbols;

performing the following steps, with a counter i=0,
wherein a and b are intermediate variables, “%” repre-
sents a modulo operation, floor() is a function represent-
ing a highest integer value that is less than the function’s
argument, and ‘" represents a bitwise XOR operation:

(1) a=1+(floor(i/S) % (S-1))

2)b=1%S

(3) C[K+b]=C[K+b]"C[i]

(4)b=(b+a) % S

(5) C[K+b]=C[K+b]"C[i]

(6) b=(b+a) % S

(7) C[K+b]=C[K+b]"C[i]

repeating those steps, for each value of counter i from 1 to

K-1; and

outputting at least the resulting array C[K], . .

as the plurality of S redundant symbols.

19. The system of claim 18, wherein S is the smallest prime
integer such that Szceil(0.01-K)+X, where X is the smallest
positive integer such that X-(X-1)=2-K.

20. A non-transitory computer-readable medium for use
with electronics capable of executing instructions read from
the computer-readable medium in order to implement encod-
ing data for transmission from a source to a destination over
a communications channel, wherein the data for transmission
is representable by an ordered set of input symbols, the com-
puter-readable medium having stored thereon:

program code for generating a plurality of redundant sym-

bols from the ordered set of input symbols, wherein each
redundant symbol in the plurality of redundant symbols
is calculated using one or more of the ordered set of input
symbols; and

program code for generating a plurality of output symbols

from a combined set of symbols including the input
symbols and the redundant symbols, wherein the num-
ber of possible output symbols is much larger than the
number of symbols in the combined set of symbols,
wherein at least one output symbol is generated from
more than one symbol in the combined set of symbols
and from less than all of the symbols in the combined set
of symbols,

wherein the program code for generating the plurality of

redundant symbols uses a deterministic process that
ensures low common membership among redundant
symbols,

wherein common membership between two redundant

symbols is the set of input symbols that both redundant
symbols depend upon and wherein low common mem-

., C[K+S-1]

US 9,236,887 B2

35

bership between two redundant symbols is present when
the number of input symbols that both redundant sym-
bols depend upon is less than a threshold as given by said
process and

wherein for each input symbol there is a predetermined
number of redundant symbols that depend upon said
input symbol.

21. A system for encoding data for transmission from a
source to a destination over a communications channel,
wherein the data for transmission is representable by an
ordered set of input symbols, the system comprising:

means for generating a plurality of redundant symbols
from the ordered set of input symbols, wherein each
redundant symbol in the plurality of redundant symbols
is calculated using one or more of the ordered set of input
symbols; and

means for generating a plurality of output symbols from a
combined set of symbols including the input symbols
and the redundant symbols, wherein the number of pos-
sible output symbols is much larger than the number of
symbols in the combined set of symbols, wherein at least
one output symbol is generated from more than one
symbol in the combined set of symbols and from less
than all of the symbols in the combined set of symbols,

wherein the means for generating the plurality of redun-
dant symbols includes means for using a deterministic
process that ensures low common membership among
redundant symbols,

wherein common membership between two redundant
symbols is the set of input symbols that both redundant
symbols depend upon and wherein low common mem-
bership between two redundant symbols is present when
the number of input symbols that both redundant sym-
bols depend upon is less than a threshold as given by said
process and

wherein for each input symbol there is a predetermined
number of redundant symbols that depend upon said
input symbol.

22. A system for decoding encoded data received over a
communications channel transmitted from a source to a des-
tination, the system comprising:

a receive module configured to receive a predetermined
number, N, of symbols, wherein the received symbols
comprise a combination of received source symbols and
received repair symbols generated from a plurality of an
ordered set of K source symbols; and

a decoder communicatively coupled to the receive module
and configured to generate to a desired degree of accu-
racy one or more unreceived source symbols of the
ordered set of K source symbols,

wherein each received symbol has an associated symbol
relation that is determined by a systematic index, J(K),
where J(K) is determined by K,

wherein the value of each unreceived source symbol is
determined by the associated symbol relation and a plu-
rality of L intermediate symbol values, wherein L is at
least K,

wherein the L intermediate symbol values are determined
by the K source symbol values and by the K symbol
relations associated with the K source symbols and by a
set of L-K pre-coding relations, and

wherein the L intermediate symbol values can be generated
to a desired degree of accuracy from the N received
source and repair symbols.

23. The system of claim 22, wherein each source symbol

has an associated encoding symbol identifier (“ESI”) that

10

15

20

25

30

35

40

45

50

55

60

65

36

identifies the source symbol, wherein the systematic index
J(K) and a value X, wherein X is a valid ESI, determines the
symbol relation for the source symbol identified by ESI X.
24. The system of claim 22, wherein the number L-K of
pre-coding relations comprises a first set of S pre-coding
relations and a second set of H pre-coding relations, and
wherein the L intermediate symbols comprises a first set of K
intermediate symbols, a second set of S intermediate sym-
bols, and a third set of H intermediate symbols.
25. The system of claim 22, wherein the K source symbols
correspond to a source block, wherein the source block is
defined by a transport protocol for streaming data.
26. A non-transitory computer-readable medium for use
with electronics capable of executing instructions read from
the computer-readable medium in order to implement decod-
ing encoded data received over a communications channel
transmitted from a source to a destination, the computer-
readable medium having stored thereon:
program code for receiving a predetermined number, N, of
symbols, wherein the received symbols comprise a com-
bination of received source symbols and received repair
symbols generated from a plurality of an ordered set of
K source symbols; and

program code for generating to a desired degree of accu-
racy one or more unreceived source symbols of the
ordered set of K source symbols,
wherein each received symbol has an associated symbol
relation that is determined by a systematic index, J(K),
where J(K) is determined by K,

wherein the value of each unreceived source symbol is
determined by the associated symbol relation and a plu-
rality of L intermediate symbol values, wherein L is at
least K,

wherein the L intermediate symbol values are determined
by the K source symbol values and by the K symbol
relations associated with the K source symbols and by a
set of L.-K pre-coding relations, and

wherein the L intermediate symbol values can be generated

to a desired degree of accuracy from the N received
source and repair symbols.
27. A system for decoding encoded data received over a
communications channel transmitted from a source to a des-
tination, the system comprising:
means for receiving a predetermined number, N, of sym-
bols, wherein the received symbols comprise a combi-
nation of received source symbols and received repair
symbols generated from a plurality of an ordered set of
K source symbols; and

means for generating to a desired degree of accuracy one or
more unreceived source symbols of the ordered set of K
source symbols,
wherein each received symbol has an associated symbol
relation that is determined by a systematic index, J(K),
where J(K) is determined by K,

wherein the value of each unreceived source symbol is
determined by the associated symbol relation and a plu-
rality of L intermediate symbol values, wherein L is at
least K,

wherein the L intermediate symbol values are determined
by the K source symbol values and by the K symbol
relations associated with the K source symbols and by a
set of L.-K pre-coding relations, and

wherein the L intermediate symbol values can be generated

to a desired degree of accuracy from the N received
source and repair symbols.

#* #* #* #* #*

